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Abstract

In the gravitational lensing of gravitational waves, wave optics should be used
instead of geometrical optics when the wavelength λ of the gravitational waves is
larger than the Schwarzschild radius of the lens mass ML. For example, for the
wave length of the gravitational waves for the space interferometer λ ∼ 1 AU, the
wave effects become important for a lens mass smaller than ∼ 108M�. In this
thesis, we discuss the wave optics in the gravitational lensing and its application
to the gravitational wave observations in the near future.

The wave optics is based on the diffraction integral which is the amplification
of the wave amplitude by the lensing. We studied the asymptotic expansion of
the diffraction integral in powers of the wavelength λ. The first term, arising from
the short wavelength limit λ → 0, corresponds to the geometrical optics limit.
The second term, being of the order of λ/ML, is the first correction term arising
from the diffraction effect. By analyzing this correction term, we find that (i)
the lensing magnification µ is modified to µ(1 + δ), where δ is of the order of
(λ/ML)

2, and (ii) if the lens has cuspy (or singular) density profile at the center
ρ(r) ∝ r−α (0 < α ≤ 2), the diffracted image is formed at the lens center with the
magnification µ ∼ (λ/ML)

3−α.
We consider the gravitational lensing of chirp signals from the coalescense of

supermassive black holes at redshift z ∼ 1 relative to the Laser Interferometer
Space Antenna. For such cases, we compute how accurately we can extract the
mass of the lens and the source position from the lensed signal. We consider two
simple lens models: the point mass lens and the SIS (Singular Isothermal Sphere).
We find that the lens mass and the source position can be determined within ∼
0.1% [(S/N)/103]−1 for the lens mass larger than 108M�, where (S/N) is the signal
to noise ratio of the unlensed chirp signals. For the SIS model, if the source position
is outside the Einstein radius, only a single image exists in the geometrical optics
approximation so that the lens parameters can not be determined. While in the
wave optics cases we find that the lens mass can be determined for ML ∼ 108M�.
For the point mass lens, one can extract the lens parameters even if the source
position is far outside the Einstein radius. As a result, the lensing cross section is
an order of magnitude larger than that for the usual strong lensing of light.
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Chapter 1

Introduction

Inspirals and mergers of compact binaries are the most promising gravitational
wave sources and will be detected by the ground based as well as the space based
detectors in the near future (e.g. Cutler & Thorne 2002). Laser interferometers are
now coming on-line or planned on broad frequency bands: for the high frequency
band 10 − 104 Hz, the ground based interferometers such as TAMA300, LIGO,
VIRGO and GEO600 will be operated; for the low frequency band 10−4 − 10−1

Hz, the Laser Interferometer Space Antenna1 (LISA) will be in operation; for
the intermediate frequency band 10−2 − 1 Hz, the space based interferometers
such as the Decihertz Interferometer Gravitational Wave Observatory (DECIGO;
Seto, Kawamura & Nakamura 2001), and Big Bang Observer2 (BBO) are planned.
For the templates of the chirp signals from coalescing compact binaries, the post-
Newtonian computations of the waveforms have been done by many authors. Using
the matched filter techniques with the template, we can obtain the binary parame-
ters such as the mass and the spatial position of the source (e.g. Cutler & Flanagan
1994). The detection rate for the compact binary mergers is also estimated for the
various sources such as neutron star binaries and massive black hole binaries (see
Cutler & Thorne 2002 and references therein). Thus, it is important to investigate
the various possibilities that alter these theoretical calculations. One of these pos-
sibilities is the gravitational lensing which affects the template (e.g. Thorne 1987),
the angular resolution of the detector (Seto 2003), and the event rate (Wang,
Stebbins, & Turner 1996; Varvella, Angonin, & Tourrenc 2003). We study the
gravitational lensing of gravitational waves in this thesis.

1.1 Wave Effects in Gravitational Lensing

Gravitational lensing of light is a well known phenomenon in the astrophysics.
If the light from distant sources pass near the massive objects, the light ray is

1See http://lisa.jpl.nasa.gov/index.html
2See http://universe.gsfc.nasa.gov/be/roadmap.html.
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Figure 1.1: The gravitational lensing configuration. ML is the lens mass, D is the
distance to the lens, and rE is the impact parameter.

deflected. We show the lensing configuration in Fig.1.1, the lens is located at
the distance D from the observer. The deflection angle is α ∼ ML/rE � 1,
where ML is the lens mass and rE is the impact parameter. From the deflection
angle α ∼ ML/rE and the geometrical relation rE ∼ αD in the Fig.1.1, we ob-
tain the Einstein radius as, rE ∼ (MLD)1/2, which is the characteristic length of
the impact parameter. The Einstein radius rE is typically given by rE ∼ 10kpc
(ML/1011M�)1/2, where we set D = H−1

0 (the Hubble distance).

In the gravitational lensing of light, the lensing quantities (the deflection angle,
the image positions, its brightness, the number of images, etc.) are calculated in
the geometrical optics, which is valid in all observational situations (Schneider,
Ehlers & Falco 1992; Nakamura & Deguchi 1999). However for the gravitational
lensing of gravitational waves, the wavelength is long so that the geometrical optics
approximation is not valid in some cases. For example, the wavelength λ of the
gravitational waves for the space interferometer is ∼ 1 AU which is extremely
larger than that of a visible light (λ ∼ 1µ m).

1.1.1 Double Slit

As shown by several authors (Ohanian 1974, Bliokh & Minakov 1975, Bontz &
Haugan 1981, Thorne 1983, Deguchi & Watson 1986a), if the wavelength λ is
larger than the Schwarzschild radius of the lens mass ML, the diffraction effect is
important and the magnification is small. To see the reason why the ratio ML/λ
determines the significance of the diffraction, we consider a double slit with the slit
width comparable to the Einstein radius rE ∼ (MLD)1/2 where D is the distance
from the screen to the slit (Nakamura 1998). The illustration of the double slit
is shown in Fig.1.2. When monochromatic waves with the wavelength λ pass
through the slit, the interference pattern is produced on the screen. Denoting the



Figure 1.2: Illustration of the double slit with the slit width rE ∼ (MLD)1/2

(Einstein radius). λ is the wavelength of the monochromatic wave, D is the distance
between the screen and the slit, and l± is the distance from each of the slit to the
observer.

path length l± as the distance from each of the slit to the observer as shown in
Fig.1.2, l± is given by,

l± =
√

(x± rE/2)2 +D2, (1.1)

where x is the position of the observer on the screen. Denoting path length differ-
ence as ∆l ≡ |l+ − l−|, we obtain from equation (1.1) as,

∆l ' rEx

D
, (1.2)

where we assume D � rE, x. The width ∆x of the central peak of the interference
pattern is obtained from equation (1.2) with setting ∆l ∼ λ as, ∆x ∼ (D/rE)λ.
Then the maximum magnification of the wave flux is of the order ∼ rE/∆x ∼
ML/λ. Thus the diffraction effect is important for

ML . 108M�

(

f

mHz

)−1

, (1.3)

where f is the frequency of the gravitational waves. However as suggested by Ruffa
(1999), the focused region by the gravitational lensing would have a relatively large
area because of the diffraction, so that the lensing probability will increase.

Since the gravitational waves from the compact binaries are coherent, the in-
terference is also important (Mandzhos 1981, Ohanian 1983, Schneider & Schmid-
Burgk 1985, Deguchi & Watson 1986b, Peterson & Falk 1991). The length of the
interference pattern on the screen ∆x is given by,

∆x ∼ D

rE
λ,



∼ 0.1AU

(

ML

106M�

)−1/2 (
D

10kpc

)1/2(
f

kHz

)−1

. (1.4)

Here, we assume that the lens is the suppermassive black hole of mass ML =
106M� at our galactic center (D ∼ 10 kpc) and the detector is the ground-based
interferometer (f ∼ kHz). Thus it may be possible to detect the interference
pattern by the orbital motion of the earth around the Sun (Ruffa 1999).

1.1.2 Chirp Signal

We consider the inspiraling binaries as the gravitational wave sources. The inspirals
of compact binaries are the most promising gravitational wave sources for the
laser interferometers. As the binary system loses its energy by the gravitational
radiation, the orbital separation decreases and the orbital frequency increases.
Thus, the frequency of the gravitational wave increases with time (df/dt > 0).
This is called a chirp signal. Hence we can see wave effects for different frequencies
in the lensed chirp signals.

1.2 Application to Gravitational Wave Observa-

tions

The coalescence of supermassive black holes (SMBHs) of mass 104 − 107M� is
the one of the most promising sources for LISA and will be detected with a very
high signal to noise ratio S/N ∼ 103 (Bender et al. 2000). The coalescence rate
of SMBHs binaries detected by LISA is estimated to be 0.1 − 102 events yr−1

(Haehnelt 1994,1998; Menou, Haiman, & Narayanan 2001; Jaffe & Backer 2003;
Wyithe & Loeb 2003). Recently, Wyithe & Loeb (2003) suggested that the event
rate was up to some hundred per year, considering the merger rate as exceedingly
high redshift (z > 5 − 10). Since the merging SMBH events will be detected for
extremely high redshift (z > 5), the lensing probability is relatively high (it could
reach several percent, see Turner, Ostriker & Gott 1984), and hence some lensing
events are expected. From the LISA frequency band (f ∼ mHz), the diffraction
effect become important for the lens mass smaller than ∼ 108M� from equation
(1.3). We will discuss the wave effects in gravitational lensing of the gravitational
waves detected by LISA in §4.

Similarly, neutron star binaries are the most promising sources for the ground
based interferometers (TAMA300,LIGO,VIRGO,GEO). The diffraction effect is
important for the lens mass smaller than 103M� for the ground based detectors
(f ∼ 102 Hz). The detection rates for the neutron star mergers are at least sev-
eral per year for advanced LIGO (Phinney 1991; Narayan, Piran & Shemi 1991;
Kalogera et al. 2001,2003). But since the source redshifts are relatively small
(z < 1) for the ground based detectors (e.g. Finn 1996), the lensing probability is



small (it would be less than 0.1 percent), and hence the lensing event rate would be
small (e.g. Wang, Stebbins & Turner 1996). Hence, we do not consider the gravi-
tational lensing of gravitational waves detected by the ground based detectors.

1.3 Differences between the Gravitational Lens-

ing of Gravitational Waves and Gravitational

Lensing of Light

We discuss the differences between the gravitational lensing of gravitational waves
and gravitational lensing of light. The wave effects (diffraction and interference)
are some of these differences, which is discussed in the previous section. Except
for the wave effects, there are some differences as follows:

• Gravitational waves propagate through surrounding matter without absorp-
tion and scattering. Hence, lens objects even in optically thick region can be
detected by lensing.

• In the gravitational lensing of light, in order to detect multiple images, an-
gular resolution θmin of detector should be smaller than the image separation
which is roughly equal to the Einstein angle θE = rE/D ∼ (M/D)1/2. This
condition θmin . θE is rewritten as,

M & 1011M�

(

D

Gpc

)(

θmin
1arcsec

)2

. (1.5)

Thus, the lens object should be more massive than galactic mass scale. But
the case of gravitational waves, the observable is time delay between the
images. If the time delay τ ∼ 103sec(M/108M�) is larger than than the
period of the gravitational waves 1/f , the two signals are detected. This
condition τ & 1/f is the same as the equation (1.3), and hence the lens
object lighter than the galactic mass (∼ 1011M�) can be detected in the case
of the gravitational waves.

• The observable for the light is the flux f of the source, while that for the
gravitational waves is the amplitude A. Then, the flux is changed in pro-
portion to the magnification µ by lensing, while the amplitude is changed in
proportion to the square root

√
µ.

• In the gravitational lensing of gravitational waves, the lensing cross section
to extract the information on the lens object (its mass, its position, etc.) is
an order of magnitude larger than that for the usual strong lensing of light
(Ruffa 1999; Takahashi & Nakamura 2003).



1.4 Organization of this thesis

We outline the organization of this thesis. In §2 we review the wave optics in
gravitational lensing of gravitational waves. We show the results for the various
lens models: the point mass lens, the SIS model, the NFW model, and the binary
lens model. In §3 we discuss the gravitational lensing in quasi-geometrical optics
approximation which is the geometrical optics including corrections arising from
the effects of the finite wavelength. In §4 we discuss the gravitationally lensed
waveform detected by LISA and mention the parameter estimation based on the
matched filtering analysis. We numerically evaluate the signal-to-noise ratio and
the parameter estimation errors. We also estimate the lensing event rate. Section
5 is devoted to summary and discussions. We assume a (ΩM ,ΩΛ) = (0.3, 0.7)
cosmology and a Hubble parameter H0 = 70kms−1Mpc−1 and use units of c =
G = 1.



Chapter 2

Wave Optics in Gravitational

Lensing

In this chapter, we review the wave optics in gravitational lensing of gravitational
waves (Schneider, Ehlers & Falco 1992; Nakamura & Deguchi 1999). The wave
optics is more fundamental than the geometrical optics, and it has been used for
the gravitational lensing of gravitational waves (see Nakamura & Deguchi 1999 and
reference therein).

2.1 Gravitational Waves Propagating through the

Curved Spacetime

2.1.1 Basic equations

We consider gravitational waves propagating under the gravitational potential of
a lens object (e.g. Misner, Thorne & Wheeler 1973). The background metric is
given by,

ds2 = − (1 + 2U) dt2 + (1 − 2U) dr2 ≡ g(B)
µν dx

µdxν, (2.1)

where U(r) (� 1) is the gravitational potential of the lens object. Let us consider

the linear perturbation hµν in the background metric tensor g
(B)
µν as

gµν = g(B)
µν + hµν . (2.2)

Under the transverse traceless Lorentz gauge condition of hνµ;ν = 0 and hµµ = 0 we
have

hµν;α
;α + 2R

(B)
αµβνh

αβ = 0, (2.3)

where the semicolon is the covariant derivative with respect to g
(B)
µν and R

(B)
αµβν is

the background Riemann tensor. If the wavelength λ is much smaller than the
typical radius of the curvature of the background, we have

hµν;α
;α = 0. (2.4)

7



Figure 2.1: Gravitational lens geometry for the source, the lens and the observer.
Here DL, DS and DLS are the distances between them, η is the displacement of
the source from the line of sight to the lens and ξ is an impact parameter. We use
the thin lens approximation in which the gravitational waves are scattered only at
the thin-lens plane.

Following the eikonal approximation to the above equation by Baraldo, Hosoya
and Nakamura (1999), we express the gravitational wave as

hµν = φ eµν , (2.5)

where eµν is the the polarization tensor of the gravitational wave (eµµ = 0, eµνe
µν =

2) and φ is a scalar. The polarization tensor eµν is parallel-transported along the
null geodesic (eµν;αk

α = 0, where kα is a wave vector) (Misner, Thorne & Wheeler
1973). Then, the change of the polarization tensor by gravitational lensing is of
the order of U (� 1) which is very small in the present situation, and hence we
can regard the polarization tensor as a constant. Thus, we treat the scalar wave φ,
instead of the gravitational wave hµν , propagating through the curved space-time.
The propagation equation of the scalar wave is

∂µ(
√

−g(B)g(B)µν∂νφ) = 0. (2.6)

For the scalar wave in the frequency domain φ̃(ω, r), the above equation (2.6) with
the metric (2.1) is rewritten as,

(

∇2 + ω2
)

φ̃ = 4ω2Uφ̃. (2.7)



Figure 2.2: Illustration of the volume V which is inside of the dashed line. This V
is enclosed with the lens plane and a sphere at the observer of radius R. Note that
this V does not include the lens plane. n is the normal vector to the lens plane.

2.1.2 Kirchhoff diffraction integral

We derive the Kirchhoff diffraction integral in order to solve the above equation
(2.7).1 In Fig.2.1, we show the gravitational lens geometry of the source, the lens
and the observer. DL, DS and DLS are the distances to the lens, the source and
from the lens to the source, respectively. η is a position vector of the source in the
source plane while ξ is the impact parameter in the lens plane. We use the thin
lens approximation in which the lens is characterized by the surface mass density
Σ(ξ) and the gravitational waves are scattered only at the thin lens plane.

We define a volume V which is inside of the dashed line in Fig.2.2. This V is
enclosed by both the lens plane and sphere at the observer of radius R. Note that
the boundary of V is very near the lens plane, but V does not include the lens
plane (see Fig.2.2). Since we assume the thin lens approximation, U = 0 in V .
Then the equation (2.7) is reduced to the Helmholtz equation (∇2 + ω2)φ̃ = 0 in
V . The Green’s function for the Helmholtz equation is eiωr/r and satisfies,

(

∇2 + ω2
) eiωr

r
= −4πδ3(r) (2.8)

where δ(r) is the delta function. With equations (2.7) and (2.8), the scalar field at

1For detailed discussions about the diffraction integral, see Born & Wolf (1997), Chapter 8.



Figure 2.3: The point I is the intersection point of the ray path and the lens plane.
r is the distance from I to the observer.

the observer φ̃Lobs is written as,

φ̃Lobs = − 1

4π

∫

V

dV

[

φ̃ ∇2 e
iωr

r
− eiωr

r
∇2φ̃

]

, (2.9)

where r denotes the distance from the observer. The volume integral in the above
equation is reduced to the surface integral by Green’s theorem:

φ̃Lobs =
1

4π

∫

S

d2ξ

[

φ̃
∂

∂n

eiωr

r
− eiωr

r

∂

∂n
φ̃

]

, (2.10)

where n is normal vector to the lens plane (see Fig.2.2). Here, we set R → ∞ in
Fig.2.2 and assume that φ̃ and ∂φ̃/∂n vanish at the surface of the sphere. Thus
the surface integral in (2.10) is done on the lens plane.

We use the eikonal approximation to the equation (2.7) in order to obtain the
field φ̃ and its derivative ∂φ̃/∂n on the boundary (the lens plane) in equation
(2.10). The field is written as φ̃ = AeiSP , where the amplitude A and the phase
SP satisfy the following conditions: |∇A/A| � |∇SP/SP | and |∇2SP | � |∇SP |2.
Then, we have the eikonal equation from the equation (2.7): (∇SP )2 = ω2(1−2U)2.
The phase is obtained by integrating this equation along the ray path as, SP =
ω
∫

d`(1− 2U). Denoting a point I which is the intersection point of the ray path
and the lens plane as shown in Fig.2.3, we have the phase at I as,

SP = ω

∫ I

source

d`(1 − 2U) = ω

[
∫ obs.

source

d`−
∫ obs.

I

d`

]

(1 − 2U). (2.11)

Since the wave propagates along the null geodesic, we obtain dt = d`(1−2U) from
the metric (2.1). Thus, the first term of the integral in equation (2.11) is the arrival
time td from the source to the observer. The second term is the distance r from I
to the observer as shown in Fig.2.3. Then, the phase (2.11) is rewritten as,

SP = ω(td − r). (2.12)



The arrival time td at the observer from the source position η through ξ is given
by (Schneider, Ehlers & Falco 1992),

td(ξ,η) =
DLDS

2DLS

(

ξ

DL

− η

DS

)2

− ψ̂(ξ) + φ̂m(η), (2.13)

where DL, DS and DLS are the distances to the lens, the source and from the
lens to the source, respectively, as shown in Fig.2.1. The first and second term in
equation (2.13) is the time delay relative to the unlensed ray. The third term φ̂m is
the arrival time for the unlensed ray. The deflection potential ψ̂(ξ) is determined
by,

∇2
ξψ̂ = 8πΣ, (2.14)

where ∇2
ξ denotes the two-dimensional Laplacian with respect to ξ, and Σ(ξ) is

the surface mass density of the lens.
The derivatives in equation (2.10) are given by,

∂

∂n

eiωr

r
= −iω cos θ

eiωr

r
, (2.15)

∂

∂n
φ̃ = iω cos θ′ φ̃, (2.16)

where the angles θ and θ′ are shown in Fig.2.3 and θ, θ′ � 1. Then, the lensed
field at the observer φ̃Lobs in equation (2.10) is finally given by,

φ̃Lobs(ω,η) =
ωA

2πiDL

∫

d2ξ exp [iωtd(ξ,η)] , (2.17)

where we assume r ' DL.
We used the Kirchhoff diffraction formula to derive the lensed waveform (2.17).

We discuss the path integral formula which is another method to drive the solution
(2.17) in the Appendix A.

2.1.3 Amplification factor

It is convenient to define the amplification factor as

F (ω,η) =
φ̃Lobs(ω,η)

φ̃obs(ω,η)
, (2.18)

where φ̃Lobs and φ̃obs are the lensed (given in equation (2.17)) and unlensed (U = 0
in Eq.(2.7)) gravitational wave amplitudes at the observer, respectively. Then, the
amplification factor F is given by (Schneider, Ehlers & Falco 1992),

F (ω,η) =
DS

DLDLS

ω

2πi

∫

d2ξ exp [iωtd(ξ,η)] , (2.19)



where F is normalized such that |F | = 1 in no lens limit (U = ψ̂ = 0).
Though we do not take account of the cosmological expansion in the metric, in

Eq.(2.1), the results can be applied to the cosmological situation since the wave-
length of the gravitational waves is much smaller than the horizon scale. What
we should do is 1) take the angular diameter distances and 2) replace ω with
ω(1 + zL) where zL is the redshift of the lens (Baraldo, Hosoya and Nakamura
1999). Then, the amplification factor F in the above equation (2.19) is rewritten
in the cosmological situation as,

F (ω,η) =
DS

DLDLS

ω(1 + zL)

2πi

∫

d2ξ exp [iω(1 + zL)td(ξ,η)] . (2.20)

where DL, DS and DLS denote the angular diameter distances.

It is useful to rewrite the amplification factor F in terms of dimensionless
quantities. We introduce ξ0 as the normalization constant of the length in the lens
plane. The impact parameter ξ and the source position η (in Fig.2.1) are rewritten
in dimensionless form,

x =
ξ

ξ0
; y =

DL

ξ0DS
η. (2.21)

Similarly, we define dimensionless frequency w by,

w =
DS

DLSDL
ξ2
0(1 + zL)ω. (2.22)

Then, the dimensionless time delay is given by,

T (x,y) =
DLDLS

DS

ξ−2
0 td(ξ,η) (2.23)

=
1

2
|x − y|2 − ψ(x) + φm(y), (2.24)

where ψ(x) and φm(y) correspond to ψ̂(ξ) and φ̂m(η) in equation (2.13): ψ =
DLDLS/(DSξ

2
0)ψ̂ and φm = DLDLS/(DSξ

2
0)φ̂m, respectively. We choose φm(y) so

that the minimum value of the time delay is zero.2 The dimensionless deflection
potential ψ(x) satisfies,

∇2
xψ =

2Σ

Σcr
, (2.25)

where ∇2
x denotes the two-dimensional Laplacian with respect to x, Σ is the surface

mass density of the lens, and Σcr = DS/(4πDLDLS). Using the above dimensionless
quantities, the amplification factor is rewritten as,

F (w,y) =
w

2πi

∫

d2x exp [iwT (x,y)] . (2.26)

2φm(y) corresponds to the arrival time in the unlensed case in Eq.(2.13) originally. But,
φm(y) is also the additional phase in F , which can be chosen freely (see the sentence after
equation (2.19)). Hence, we choose a convenient value for later calculation.



For axially symmetric lens models, the integral of the amplification factor F in
equation (2.26) becomes a relatively simple form, since the deflection potential
ψ(x) depends only on x = |x|. F is expressed as (Nakamura & Deguchi 1999),

F (w, y) = −iweiwy2/2
∫ ∞

0

dx x J0(wxy) exp

[

iw

(

1

2
x2 − ψ(x) + φm(y)

)]

, (2.27)

where J0 is the Bessel function of zeroth order. It takes a long time to calculate
F numerically in equations (2.26) and (2.27), because the integrand is rapidly os-
cillating function especially for large w. In the Appendix B, we present a method
for numerical computation to shorten the computing time.

We use the Einstein radius (∼
√
MD) as a arbitrary scale length ξ0 (except for

the NFW lens), for convenience. The Einstein radius is the typical scale length of
the impact parameter in gravitational lensing, and hence the dimensionless quan-
tities x,y become of the order of one. The dimensionless potential ψ(x) and time
delay T (x,y) are also of the order of one. Then, the dimensionless frequency is
roughly w ∼M/λ from equation (2.22).

2.1.4 Geometrical Optics Approximation

In the geometrical optics limit (w � 1), the stationary points of the T (x,y)
contribute to the integral of Eq.(2.26) so that the image positions xj are determined
by the lens equation, ∇xT (x,y) = 0 or

y = x −∇xψ(x). (2.28)

This is just the Fermat’s principle. We expand T (x,y) around the j-th image
position xj as,

T (x,y) = T (xj,y) +
∑

a

∂aT (xj,y)x̃a +
1

2

∑

a,b

∂a∂bT (xj,y)x̃ax̃b + O(x̃3) (2.29)

where x̃ = x − xj and the indices a,b,... run from 1 to 2. The second term in
Eq.(2.29) vanishes because xj is the stationary point of T (x,y). Inserting Eq.(2.29)
to (2.26) with the Gaussian integral,3 we obtain the amplification factor in geo-
metrical optics limit as (Nakamura & Deguchi 1999),

Fgeo(w,y) =
∑

j

|µj|1/2 exp [ iwTj − iπnj] , (2.30)

where the magnification of the j-th image is µj = 1/ det (∂y/∂xj), Tj = T (xj,y)
and nj = 0, 1/2, 1 when xj is a minimum, saddle, maximum point of T (x,y),

3
∫∞

−∞
dxeiax2

=
√

π
|a|e

iπ/4×sign(a)



respectively. In the time domain the lensed wave is expressed as

φLgeo(t, r) =
∑

j

|µj|1/2 e−iπnjφ(t− td,j, r), (2.31)

where td,j is the time delay of the j-th image (td = DSξ
2
0/(DLDLS) × T ). This

shows that the oscillatory behavior of F in high frequency w is essential to obtain
the time delay among the images.

2.2 Amplification Factor for Various Lens Mod-

els

In this section, we show the behavior of the amplification factor F for the various
lens models. We consider the following lens models: point mass lens, singular
isothermal sphere (SIS) lens, Navarro Frenk White (NFW) lens, and binary lens.

2.2.1 Point Mass Lens

The surface mass density is expressed as Σ(ξ) = MLδ
2(ξ) where ML is the lens

mass. As the normalization constant ξ0 we adopt the Einstein radius given by
ξ0 = (4MLDLDLS/DS)

1/2 while the dimensionless deflection potential is given as
ψ(x) = ln x. In this case, Eq.(2.27) is analytically integrated as (Peters 1974),

F (w, y) = exp
[πw

4
+ i

w

2

{

ln
(w

2

)

− 2φm(y)
}]

× Γ

(

1 − i

2
w

)

1F1

(

i

2
w, 1;

i

2
wy2

)

, (2.32)

where w = 4MLzω; φm(y) = (xm − y)2/2 − ln xm with xm = (y +
√

y2 + 4)/2;
MLz = ML(1 + zL) is the redshifted lens mass and 1F1 is the confluent hypergeo-
metric function. Thus, the amplification factor F depends on two parameters; the
(dimensionless) frequency w and the source position y. In the geometrical optics
limit (w � 1) from equation (2.30) we have

Fgeo(w, y) = |µ+|1/2 − i |µ−|1/2 eiw∆T , (2.33)

where the magnification of each image is µ± = 1/2 ± (y2 + 2)/(2y
√

y2 + 4) and

the time delay between the double images is ∆T = y
√

y2 + 4/2 + ln((
√

y2 + 4 +

y)/(
√

y2 + 4 − y)). The time delay is typically ∆td = 4MLz × ∆T = 2 × 103 sec
×(MLz/108M�).

The point mass lens model has been used for lensing by compact objects such
as black holes or stars. Even for the extended lens, this model can be used if the
lens size is much smaller than the Einstein radius, because of Birkhoff’s theorem.



Figure 2.4: The amplification factor |F | (left) and the phase θF = −i ln[F/|F |]
(right) for point mass lens as a function of w with the fixed source position y =
0.1, 0.3, 1 and 3. For w . 1, the amplification is very small due to the diffraction
effect. For w & 1, the oscillatory behavior appears due to the interference between
the double images.

Hence, this model is most frequently used in wave optics in gravitational lensing
of gravitational waves (Nakamura 1998; Ruffa 1999; De Paolis et al. 2001,2002;
Zakharov & Baryshev 2002; Takahashi & Nakamura 2003). As far as we know, the
analytical solution of F in Eq.(2.26) is known only for this model.

In the left panel of Fig.2.4, the amplification factor |F | for the point mass lens
is shown as a function of w with a fixed source position y = 0.1, 0.3, 1 and 3. For
w . 1, the amplification is very small due to the diffraction effect (e.g., Bontz &
Haugan 1980). Since in this case the wave length is so long that the wave does
not feel the existence of the lens. For w & 1, |F | asymptotically converges to the
geometrical optics limit (Eq.(2.33)),

|Fgeo|2 = |µ+| + |µ−| + 2 |µ+µ−|1/2 sin(w∆T ). (2.34)

The first and second terms in Eq.(2.34), |µ| = |µ+| + |µ−|, represent the total
magnification in the geometrical optics. The third term represents the interference
between the double images. The oscillatory behavior (in Fig.2.4) is due to this
interference. The amplitude and the period of this oscillation are approximately
equal to 2|µ+µ−|1/2 and w∆T in the third term of Eq.(2.34), respectively. As
the source position y increases, the total magnification |µ| (= |µ+|+ |µ−|) and the
amplitude of the oscillation 2|µ+µ−|1/2 decrease. This is because each magnification
|µ±(y)| decreases as y increases.

The right panel of Fig.2.4 is the same as the left panel, but we show the phase



of the amplification factor θF = −i ln[F/|F |]. The behavior is similar to that of
the amplitude (in left panel), and the wave effects appear in the phase θF as well
as the amplitude |F |. For w & 1, θF asymptotically converges to the geometrical
optics limit (Eq.(2.33)),

θF = arctan

[ −|µ−|1/2 cos(w∆T )

|µ+|1/2 + |µ−|1/2 sin(w∆T )

]

, (2.35)

From the above equation (2.35), the phase θF oscillates between − arctan(|µ−/µ+|1/2)
and arctan(|µ−/µ+|1/2) with the period of w∆T . As the source position y increases,
the magnification ratio |µ−/µ+| and the amplitude of the oscillation arctan(|µ−/µ+|1/2)
decrease.

2.2.2 Singular Isothermal Sphere

The surface density of the SIS (Singular Isothermal Sphere) is characterized by
the velocity dispersion v as, Σ(ξ) = v2/(2ξ). As the normalization constant we
adopt the Einstein radius ξ0 = 4πv2DLDLS/DS and the dimensionless deflection
potential is ψ(x) = x. In this case F in Eq.(2.27) is expressed as,

F (w, y) = −iweiwy2/2
∫ ∞

0

dx x J0(wxy) exp

[

iw

(

1

2
x2 − x+ φm(y)

)]

, (2.36)

where J0 is the Bessel function of zeroth order; φm(y) = y + 1/2 and w = 4MLzω
where MLz is defined as the mass inside the Einstein radius given by MLz =
4π2v4(1 + zL)DLDLS/DS. Then, F depends on the two parameters w and y. We
computed the above integral numerically for various parameters. In the geometrical
optics limit (w � 1), F is given by,

Fgeo(w, y) = |µ+|1/2 − i |µ−|1/2 eiw∆T for y < 1,

= |µ+|1/2 for y ≥ 1, (2.37)

where µ± = ±1 + 1/y and ∆T = 2y. For y < 1 double images are formed, while
for y ≥ 1 single image is formed.

The SIS model is used for more realistic lens objects than the point mass lens,
such as galaxies, star clusters and dark halos (Takahashi & Nakamura 2003).

Fig.2.5 is the same as Fig.2.4, but for the SIS lens. The behavior is similar
to that for the point mass lens. In the left panel, for w & 1, |F | asymptotically
converges to the geometrical optics limit (Eq.(2.37)),

|Fgeo|2 = |µ+| + |µ−| + 2 |µ+µ−|1/2 sin(w∆T ) for y < 1,

= |µ+| for y ≥ 1. (2.38)

For y < 1, the oscillatory behavior in the left panel of Fig.2.5 is because of the
interference between the double images. The amplitude and period are given in



Figure 2.5: Same as Fig.2.4, but for SIS lens. We note that even if y ≥ 1 (a single
image is formed in the geometrical optics limit), the dumped oscillatory behavior
appears.

the above equation (2.38) as, 2|µ+µ−|1/2 and w∆T , respectively. As y increases,
the magnifications |µ±| and the amplitude of the oscillation 2|µ+µ−|1/2 decrease.
Even for y ≥ 1 (y = 3 in Fig.2.5), the damped oscillatory behavior appears, which
looks like the time delay factor of sin(w∆T ) although only a single image exists in
the geometrical optics limit (see equation (2.38)). In the right panel, for w & 1,
θF converges to the geometrical optics limit (Eq.(2.37)),

θF = arctan

[ −|µ−|1/2 cos(w∆T )

|µ+|1/2 + |µ−|1/2 sin(w∆T )

]

for y ≤ 1,

= 0 for y ≥ 1. (2.39)

For y < 1, θF oscillates with the amplitude of arctan(|µ−/µ+|1/2) and the period
of w∆T as shown in right panel. We note for y ≥ 1 (y = 3 in the right panel) that
the dumped oscillation is seen in θF as well as in |F | (left panel). We discuss the
reason for this dumped oscillations in the next chapter.

2.2.3 Navarro-Frenk-White lens

The NFW profile was proposed from numerical simulations of cold dark matter
(CDM) halos by Navarro, Frenk & White (1996,1997). They showed that the
density profile of the dark halos has the “universal” form,

ρ(r) =
ρs

(r/rs)(r/rs + 1)2
, (2.40)



where rs is a scale length and ρs is a characteristic density. The scale length rs
is typically 10 (100) kpc on a galactic (cluster) halo scale. The NFW lens is used
for lensing by galactic halos and clusters of galaxies. The surface mass density is
written as (Bartelmann 1996),

Σ(ξ) = 2ρsrs

[

2

{1 − (ξ/rs)2}3/2
arctanh

√

1 − ξ/rs
1 + ξ/rs

− 1

1 − (ξ/rs)2

]

(2.41)

for ξ ≤ rs,

= 2ρsrs

[

−2

{(ξ/rs)2 − 1}3/2
arctan

√

ξ/rs − 1

ξ/rs + 1
+

1

(ξ/rs)2 − 1

]

(2.42)

for ξ ≥ rs.

The deflection potential is also written as (Bartelmann 1996; Keeton 2001),

ψ(x) =
κs
2

[

(

ln
x

2

)2

−
(

arctanh
√

1 − x2
)2
]

for x ≤ 1,

=
κs
2

[

(

ln
x

2

)2

+
(

arctan
√
x2 − 1

)2
]

for x ≥ 1, (2.43)

where κs = 16πρs(DLDLS/DS)rs is the dimensionless surface density and we adopt
the scale radius, not the Einstein radius, as the normalization length: ξ0 = rs. With
the above equation (2.43), we numerically integrate the integral of F in equation
(2.27). F depends on three parameters; w, y and κs. We show the results for
κs = 1 and 10, since κs is of the order of 1 suggested by the numerical simulations
(e.g. Bullock et al. 2001).

We show the lens equation, y = x− ψ′(x), for the NFW lens with κs = 1 (left)
and 10 (right) in Fig.2.6. For |y| < ycrit three images are formed, while for |y| > ycrit
a single image is formed. The tangential (radial) caustic is y = 0 (y = ycr) in
which the magnification becomes infinite. The image positions xj, magnifications
µj and time delays Tj are numerically obtained from the lens equation. Fgeo is also
numerically calculated.

The amplification factor |F | and the phase θF for the NFW lens are shown
for κs = 1 in Fig.2.7 and for κs = 10 in Fig.2.8. The source position is fixed as
y/ycr = 0.1, 0.3 and 2 in both figures. The values of w in the horizontal axis of the
Fig.2.7 (Fig.2.8) is about 100 (0.1) times larger (smaller) than that in the previous
figures (see Fig.2.4 and 2.5). This is because that w is proportional to ξ2

0 and we
adopt the scale radius, not the Einstein radius (which is adopted in the previous
cases), as the normalization length: ξ0 = rs. From the left (right) panel of Fig.2.6,
the Einstein radius is x ∼ 0.2 (x ∼ 3), which is determined by y = 0 = x− ψ ′(x).
Then rs is about 5 (0.3) times larger (smaller) than the Einstein radius, and hence
the dimensionless frequency w is about 30 (0.1) times larger (smaller) than that
in the case of using the Einstein radius (since w ∝ ξ2

0 , see Eq.(2.22)). Thus, as



Figure 2.6: The lens equation for the NFW lens with κs = 1 (left) and κs = 10
(right). For |y| < ycrit three images are formed, while for |y| > ycrit single image is
formed.

Figure 2.7: Same as Fig.2.4, but for NFW lens with κs = 1. We note that even
if y > ycr (a single image is formed in the geometrical optics limit), the dumped
oscillatory behavior appears similar to the SIS model.



Figure 2.8: Same as Fig.2.7, but for κs = 10.

shown in Fig.2.7, the diffraction effect is important for w . 102. For w & 102

in y/ycr = 0.1 and 0.3, the three images are formed, and hence the interference
patterns between the three images are relatively complicated. We note that for
y/ycr = 2 the dumped oscillatory behavior is appeared similar to the case in the
SIS model with y = 3 as shown in Fig.2.5. The reason for this dumped oscillation
is discussed in the next chapter.

Fig.2.8 is the same as Fig.2.7, but for κs = 10. The behavior of F and θF
is similar to that for κs = 1. The diffraction effect is important for w . 1. The
amplitude of the oscillation in |F | is smaller than that for κs = 1 in Fig.2.7, because
the magnification µj is large in the case of κs = 1.

2.2.4 Binary lens

We consider the two point mass lenses with mass M1 and M2 in the lens plane. We
assume the two lens positions are fixed with the separation 2L. The surface density
of the binary lens is, Σ(ξ) = M1δ

2(ξ − L) +M2δ
2(ξ + L), where we set L = (L, 0)

in the lens plane. As the normalization constant we adopt the Einstein radius
ξ0 = [4(M1 + M2)DLDLS/DS]

1/2, and the (dimensionless) deflection potential is
(Schneider & Weiss 1986),

ψ(x) = ν1 ln |x − `| + ν2 ln |x + `| . (2.44)

The mass ratio ν1,2 and the separation vector ` are defined as,

ν1,2 =
M1,2

M1 +M2

, ` =
L

ξ0
. (2.45)



With the above equation (2.44), we numerically calculate the amplification factor
F in Eq.(2.26). Since the binary lens is non-axially symmetric, it takes a long
time to numerically calculate the double integral in Eq.(2.26). Thus, we consider
the equal mass lens (ν1,2 = 1/2) for simplicity. Then, the amplification factor F
depends on w,y and `.

The lens equation for the binary lens is obtained from Eq.(2.44) as, y =
x − ∇xψ(x). The image positions xj, magnifications µj, and time delays Tj are
numerically obtained.4 In Fig.2.9, we show the lensing configurations with fixed
source position y = (1,

√
3)/10 and the separation ` = 1.2 (upper panel) and

` = 0.5 (lower panel). The upper part of each panel displays the source position
(star) and the caustics (solid line) in the source plane. The lower part of each panel
displays the two point mass lenses (filled circle), the image positions (open circles),
and the critical curves (dotted line) in the lens plane. The caustics (critical curves)
are defined as the curves on which the magnification is infinite in the source (lens)
plane. Thus, if the source is near the caustics the amplification factor F is very
large. The three images are formed in the upper panel, while the five images are
formed in the lower panel. In the binary lens, if the source is inside the caustics the
five images are formed, while if the source is outside the caustics the three images
are formed (see Schneider & Weiss 1986).

In Fig.2.10, we show the amplification factor |F | and the phase θF for the binary
lens in the case shown in Fig.2.9. In this case, since the three or five images are
formed, the interference patterns are quit complicated. For ` = 0.5, since the source
is near the caustics in Fig.2.9 and the five images are formed, the amplification F
is larger than that for ` = 1.2.

In Fig.2.11, we show the amplification factor |F | with the separation ` =
0.3, 0.1, and 0 (this corresponds to the point mass lens). The source position
is y = (1,

√
3)/10 (left panel) and y = (

√
3, 1) × 0.15 (right panel). In both these

panels, the shape for ` = 0.3 (dashed line) is different from that for the point mass
lens (solid line). But, the shape for ` = 0.1 (dotted line) is very similar to that
for the point mass lens. Thus, if the separation L is about 0.1 times smaller than
the Einstein radius ` . 0.1 or L . 0.1 × ξ0, then the amplification factor is quit
similar to that in the point mass lens.

4We use the method developed by Asada (Asada 2002; Asada, Kasai & Kasai 2002) to obtain
xj , µj , and Tj . They showed that the lens equation for the binary lens, which is a simultaneous
equation, can be reduced to a real fifth-order equation.



Figure 2.9: The lensing configurations with the separation ` = 1.2 (upper) and
` = 0.5 (lower) for the binary lens with equal mass. The source position is fixed
as y = (1,

√
3)/10. In the upper part of each panel, the source position (star) and

the caustics (solid line) are shown in the source plane. In the lower part of each
panel, the two point mass lenses (filled circle), the image positions (open circles),
and the critical curves (dotted line) are shown in the lens plane.



Figure 2.10: Same as Fig.2.4, but for the binary lens with equal mass. The sepa-
ration of the two lenses is ` = 1.2 (solid line) and ` = 0.5 (dashed line) with the
fixed source position y = (1,

√
3)/10.

Figure 2.11: The amplification factor |F | for the binary lens with the separation
` = 0.3, 0.1, and 0 (the point mass lens). The source position is y = (1,

√
3)/10

(left panel) and y = (
√

3, 1) × 0.15 (right panel).





Chapter 3

Quasi-geometrical Optics

Approximation in Gravitational

Lensing

In the previous chapter, we reviewed the wave optics in the gravitational lensing
of gravitational waves. We showed that for λ & ML (where λ is the wavelength of
gravitational waves and ML is the Schwarzschild radius of the lens) the diffraction
effect is important and the magnification is small, and for λ�ML the geometrical
optics approximation is valid. In this chapter, we consider the case for λ . ML,
i.e. the quasi-geometrical optics approximation which is the geometrical optics
including corrections arising from the effects of the finite wavelength. We can
obtain these correction terms by an asymptotic expansion of the diffraction integral
(discussed in §2.1) in powers of the wavelength λ.1 We note that these terms can
be obtained analytically.

It is important to derive these correction terms for the following two reasons:
(i) calculations in the wave optics are based on the amplification factor F (in
Eq.(2.26)), but it is time consuming to numerically calculate F especially for high
frequency ω � 1 (see the sentences after equation (2.27)). Hence, it is a great
saving of computing time to use the analytical expressions. (ii) We can understand
clearly the difference between the wave optics and the geometrical optics.

In this chapter, we explore the asymptotic expansion of F (w,y) (in Eq.(2.26))
in powers of the inverse of the dimensionless frequency 1/w. Here, 1/w is roughly
equal to λ/ML from the discussion at the end of §2.1.3. The first term, arising
from the high frequency limit w → ∞, corresponds to the geometrical optics limit
Fgeo in the previous chapter. The second term, being of the order of 1/w, is the
first correction term arising from diffraction effect. We study this first correction
term, and do not consider the higher order terms, for simplicity.

1The asymptotic expansion of the diffraction integral has been studied in optics. See the
following text books for detailed discussion: Kline & Kay (1965), Ch.XII; Mandel & Wolf (1995),
Ch.3.3; Born & Wolf (1997), App.III, and references therein.
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3.1 Effect on the Magnifications of the Images

We expand the amplification factor F (w,y) in powers of 1/w (� 1) and discuss
the behavior of the order of 1/w term. Here, we only consider axially symmetric
lens models because the basic formulae are relatively simple, while the case of
the non-axially symmetric lens models is discussed in the Appendix C. In the
axially symmetric lens, the deflection potential is a function of |x| as ψ(x) = ψ(|x|)
where x = (x1, x2); the source position and the image position are y = (y, 0) and
xj = (xj, 0), respectively. The lens equation reduces to a one-dimensional form,
y = x1 − ∂1ψ(x). In this case, the expansion of T (x,y) around the image position
xj in Eq.(2.29) is simply rewritten as,

T (x,y) = Tj + αjx̃
2
1 + βjx̃

2
2 + O(x̃3), (3.1)

where x̃ = x − xj. Tj, αj and βj are defined by,

Tj =
1

2
(xj − y)2 − ψj + φm (3.2)

αj =
1

2

(

1 − ψ′′
j

)

(3.3)

βj =
1

2

(

1 −
ψ′
j

|xj|

)

(3.4)

where ψ
(n)
j = dnψ(|xj|)/dxn. The magnification µj and the coefficient nj in Fgeo of

equation (2.30) are also rewritten as, µj = 1/(4αjβj) = 1/[(1 − ψ′′
j )(1 − ψ′

j/|xj|)]
and nj = 1/2 − sign(αj)/4 − sign(βj)/4.

We expand T (x,y) in Eq.(3.1) up to the fourth order of x̃ as,

T (x,y) = Tj + αjx̃
2
1 + βjx̃

2
2 +

1

6

∑

a,b,c

∂a∂b∂cT (xj,y)x̃ax̃bx̃c

+
1

24

∑

a,b,c,d

∂a∂b∂c∂dT (xj,y)x̃ax̃bx̃cx̃d + O(x̃5). (3.5)

Inserting the above equation (3.5) into (2.26), we obtain,

F (w, y) =
1

2πi

∑

j

eiwTj

∫

d2x′ exp
[

i
(

αjx
′ 2
1 + βjx

′ 2
2

+
1

6
√
w

∑

a,b,c

∂a∂b∂cT (xj,y)x′ax
′
bx

′
c

+
1

24w

∑

a,b,c,d

∂a∂b∂c∂dT (xj,y)x′ax
′
bx

′
cx

′
d + O(w−3/2)

)]

. (3.6)



Here, we change the integral variable from x to x′ =
√
wx̃ =

√
w(x − xj). We

expand the above equation (3.6) in powers of 1/w as,

F (w, y) =
1

2πi

∑

j

eiwTj

∫

d2x′ei(αjx′21 +βjx′22 )

[

1 +
i

6
√
w

∑

a,b,c

∂a∂b∂cT (xj,y)x′ax
′
bx

′
c

+
1

w







− 1

72

(

∑

a,b,c

∂a∂b∂cT (xj,y)x′ax
′
bx

′
c

)2

+
i

24

∑

a,b,c,d

∂a∂b∂c∂dT (xj,y)x′ax
′
bx

′
cx

′
d

}

+ O(w−3/2)

]

. (3.7)

The first term of the above equation (3.7) is the amplification factor in the geomet-
rical optics limit Fgeo in equation (2.30). The integral in the second term vanishes
because the integrand is an odd function of x′a. The third term is the correction
term, being proportional to 1/w, arising from the diffraction effect. Thus the devi-
ation from the geometrical optics is of the order of 1/w ∼ λ/ML. Inserting T (x,y)
in Eq.(2.24) into (3.7), we obtain F as,

F (w, y) =
∑

j

|µj|1/2
(

1 +
i

w
∆j

)

eiwTj−iπnj + O(w−2), (3.8)

where

∆j =
1

16

[

1

2α2
j

ψ
(4)
j +

5

12α3
j

ψ
(3)
j

2
+

1

α2
j

ψ
(3)
j

|xj|
+
αj − βj
αjβj

1

|xj|2

]

, (3.9)

and ∆j is a real number. We denote dFm as the second term of the above equation
(3.8) as,

dFm(w, y) ≡ i

w

∑

j

∆j |µj|1/2 eiwTj−iπnj . (3.10)

Since dFm is the correction term arising near the image positions, this term repre-
sents the corrections to the properties of these images such as its magnifications,
and the time delays. We rewrite F in above equation (3.8) as,

F (w, y) =
∑

j

∣

∣

∣

∣

µj

[

1 +

(

∆j

w

)2]∣
∣

∣

∣

1/2

eiwTj+iδϕ−iπnj + O(w−2), (3.11)

where δϕ = arctan(∆j/w). Thus in the quasi-geometrical optics approximation,
the magnification µj is modified to µj[1+(∆j/w)2], where (∆j/w)2 is of the order of
(λ/ML)

2. That is, the magnification is slightly larger than that in the geometrical
optics limit. The phase is also changed by δϕ, which is of the order of λ/ML.

The lensed wave in the time domain is given by,

φL(t, r) = φLgeo(t, r) +
∑

j

∆̃j|µj|1/2e−iπnj

∫ t−td,j

dt′φ(t′, r), (3.12)



where ∆̃j = (DLDLS/DS)ξ
−2
0 (1 + zL)

−1∆j and φLgeo is the lensed wave in the
geometrical optics limit in equation (2.31). The second term is the deviation from
the geometrical optics limit. For example, we consider the monochromatic wave
φ(t) with the frequency ω as the unlensed waveform: φ(t, r) = A sin(ωt + ϕ0),
where A is the amplitude and ϕ0 is the phase. Inserting this monochromatic wave
into Eq.(2.31) and (3.12), we obtain the lensed wave φL as,

φL(t, r) = A
∑

j

∣

∣

∣

∣

µj

[

1 +

(

∆̃j

ω

)2]∣
∣

∣

∣

1/2

sin [ ω(t− td,j) + ϕ0 + δϕ] e−iπnj , (3.13)

where δϕ = arctan(∆̃j/ω), and we note that ∆̃j/ω = ∆j/w. From the above
equation, the each lensed image is magnified by µj[1 + (∆̃j/ω)2], and the phase
is changed by δϕ. These results are consistent with that in the frequency domain
(see the sentences after equation (3.11)).

3.2 Contributions from the Non-stationary Points

In the previous section, we showed that the contributions to the diffraction integral
F arise from the stationary points (or image positions). In this section, we discuss
the contributions from the non-stationary points. We denote xns as the non-
stationary point, at which the condition |∇T | 6= 0 satisfies. If T (x,y) can be
expanded at xns, we obtain the series of T similar to Eq.(3.1) as,

T (x,y) = Tns + T ′
1x̃1 + T ′

2x̃2 + αnsx̃
2
1 + βnsx̃

2
2 + O(x̃3), (3.14)

where x̃ = x − xns, and T ′
1,2 = ∂1,2T (xns,y). Note that either T ′

1 or T ′
2 does not

vanish because of |∇T | 6= 0 at xns. Tns, αns, and βns are defined same as equations
from (3.2) to (3.4), but at the non-stationary point xns.

Inserting the above equation (3.14) to (2.26), we obtain,

F (w, y) =
eiwTns

2πiw

∫

d2x′ exp

[

i

{

T ′
1x

′
1 + T ′

2x
′
2 +

1

w

(

αjx
′ 2
1 + βjx

′ 2
2

)

+ O(w−2)

}]

,

(3.15)
where x′ = wx̃. We expand the integrand of the equation (3.15) in powers of 1/w
as,

F (w, y) =
eiwTns

2πiw

∫

d2x′ ei(T
′
1x

′
1+T ′

2x
′
2)

[

1 +
1

w

(

αnsx
′ 2
1 + βnsx

′ 2
2

)

+ O(w−2)

]

.

(3.16)
The above equation can be integrated as,

F (w, y) = 2π
eiwTns

iw

[

δ(T ′
1)δ(T

′
2) −

1

w

(

αns
∂2

∂T ′2
1

+ βns
∂2

∂T ′2
2

)

δ(T ′
1)δ(T

′
2) + O(w−2)

]

.

(3.17)



Thus, if both T ′
1 6= 0 and T ′

2 6= 0, the above equation vanishes. Even if either
T ′

1 = 0 or T ′
2 = 0, it is easy to show that F vanishes doing the same calculations

from equations (3.15) to (3.17). Thus, the contributions to the amplification factor
F at the non-stationary points are negligible.

In the above discussion, we assume that T (x,y) has the derivatives at the non-
stationary point xns (see the sentences before the equation (3.14)). But, if the
derivatives of T are not defined at xns, the result in Eq.(3.17) should be recon-
sidered. If the lens has the cuspy (or singular) density profile at the center, the
derivatives of T are not defined at the lens center. We will discuss this case in the
next section.

3.3 Central Cusp of the Lens

We consider the correction terms in the amplification factor F arising at the central
cusp of the lens. For the inner density profile of the lens ρ ∝ r−α (0 < α ≤ 2),2

the surface density and the deflection potential at small radius are given by,

Σ(ξ) ∝ ξ−α+1 for α 6= 1,

∝ ln ξ for α = 1, (3.18)

ψ(x) ∝ x−α+3 for α 6= 1,

∝ x2 ln x for α = 1. (3.19)

We note that the Taylor series of ψ(x) around x = 0 like Eq.(3.14) cannot be
obtained from the above equation (3.19). For example, in the case of α = 2, the
deflection potential is ψ ∝ x, but the derivative of |x| is discontinuous at x = 0.
Hence we use ψ in Eq.(3.19) directly, not the Taylor series in equation (3.14). Let
us calculate the correction terms in the amplification factor contributed from the
lens center for following four cases; α = 2, 1 < α < 2, α = 1, and 0 < α < 1.

Case of α = 2 If the inner density profile is ρ ∝ r−2 (e.g. the singular isothermal
sphere model), the deflection potential is given by ψ(x) = ψ0x (ψ0 is a constant)
from equation (3.19). Inserting this potential ψ into equation (2.26), we obtain,

F (w, y) =
eiw[y2/2+φm(y)]

2πiw

∫

dx′2 exp

[

−i
{

yx′1 + ψ0

√

x′21 + x′22 + O(1/w)

}]

,

(3.20)

where we changed the integral variable from x to x′ = wx. We denote dFc(w, y)
as the leading term of the above integral which is proportional to 1/w. dFc is

2We do not consider the steeper profile α > 2, since the mass at the lens center is infinite.



obtained by integrating the above equation as,

dFc(w, y) =
eiw[y2/2+φm(y)]

w

1

(y2 − ψ2
0)

3/2
for |y| > |ψ0|, (3.21)

=
eiw[y2/2+φm(y)]

w

i

(ψ2
0 − y2)3/2

for |y| < |ψ0|. (3.22)

Thus, the contributions to the amplification factor F at the lens center is of the
order of 1/w ∼ λ/ML. This is because of the singularity in the density profile at
the lens center. The correction terms dFc in equation (3.21) and (3.22) represent
a diffracted image which is formed at the lens center by the diffraction effect. The
magnification of this image is of the order of ∼ λ/ML.

Case of 1 < α < 2 The deflection potential at the small radius is ψ(x) =
ψ0 x−α+3 (ψ0 is a constant) from equation (3.19). We insert ψ into equation
(2.27),

F (w, y) = − i

w
eiw[y2/2+φm(y)]

∫ ∞

0

dx′x′J0(yx
′) ei/(2w)x′2 e−iw

α−2ψ0x′−α+3

, (3.23)

where x′ = wx. We expand the integrand in powers of 1/w as:

F (w, y) = − i

w
eiw[y2/2+φm(y)]

∫ ∞

0

dx′x′J0(yx
′)
[

1 − iwα−2ψ0 x
′−α+3 + O(w2(α−2))

]

.

(3.24)
The above equation can be integrated analytically (e.g. Gradshteyn & Ryzhik
2000). 3 The first term in Eq.(3.24) vanishes, and the second term is the leading
term. We denote the leading term as dFc(w, y):

dFc(w, y) = −1

2

(y

2

)α−5

ψ0w
α−3 eiw[y2/2+φm(y)] Γ((5 − α)/2)

Γ((α− 3)/2)
, (3.25)

where Γ is the gamma function. Thus, the diffracted image is formed at the lens
center similar to the case of α = 2. The magnification is roughly ∼ (λ/ML)

3−α.

Case of α = 1 If the inner density profile is ρ ∝ r−1 (e.g. the Navarro Frenk
White model), the deflection potential is given by ψ(x) = ψ0x

2 ln x (ψ0 is a con-
stant) from equation (3.19). Inserting this ψ into equation (2.27), we have,

F (w, y) = − i

w
eiw[y2/2+φm(y)]

∫ ∞

0

dx′x′J0(yx
′) ei/(2w)x′2 [1−2ψ0 ln(x′/w)], (3.26)

3A formula for the Bessel function, xnJ0(yx) = [d/(ydy)]n(ynJn(yx)), where n is a integer
(Abramowitz & Stegun 1970), is useful to integrate F .



where x′ = wx. We expand the integrand of Eq.(3.26) in powers of 1/w:

F (w, y) = − i

w
eiw[y2/2+φm(y)]

∫ ∞

0

dx′x′J0(yx
′)

[

1 +
i

2w
x′2
{

1 − 2ψ0 ln
x′

w

}

+O(w−2)

]

. (3.27)

The above equation can be integrated analytically (e.g. Gradshteyn & Ryzhik
2000), similar to the previous case of 1 < α < 2. The first term in Eq.(3.27)
vanishes and the second term becomes the leading term. Denoting dFc(w, y) as
this leading term, dFc is written as,

dFc(w, y) =
−4ψ0

(wy2)2
eiw[y2/2+φm(y)]. (3.28)

Thus, the diffracted image is formed at the lens center similar to the previous cases.
The magnification is roughly ∼ (λ/ML)

2.

Case of 0 < α < 1 The diffraction potential is the same as that in the previous
case 1 < α < 2, and the amplification factor is similarly given in equation (3.23).
We expand the integrand of Eq.(3.23) in powers of 1/w as:

F (w, y) = − i

w
eiw[y2/2+φm(y)]

∫ ∞

0

dx′x′J0(yx
′)

[

1 +
i

2w
x′2

−iwα−2ψ0 x
′−α+3 + O(1/w2)

]

, (3.29)

where we note that the leading correction term in the integrand is ∼ 1/w, not
∼ wα−2 (this is the case for equation (3.24)), since 0 < α < 1. The above equation
can be integrated similar to the previous cases. The first and the second term in
Eq.(3.29) vanish, and the leading term is the third term. Denoting dFc(w, y) as
this leading term, we have dFc as,

dFc(w, y) = −1

2

(y

2

)α−5

ψ0w
α−3 eiw[y2/2+φm(y)] Γ((5 − α)/2)

Γ((α− 3)/2)
. (3.30)

This is the same as dFc in Eq.(3.25).

From the discussion for the four cases, the diffracted image is always formed at
the lens center for the inner density profile ρ ∝ r−α (0 < α ≤ 2). The magnification
of this central image is roughly given by, µ ∼ (λ/ML)

3−α.



3.4 Results for Specific Lens Models

We apply the quasi-geometrical optics approximation to simple lens models. We
consider the following axially symmetric lens models: point mass lens, singular
isothermal sphere (SIS) lens, isothermal sphere lens with a finite core, and Navarro-
Frenk-White (NFW) lens. Since the amplification factor F and that in the geo-
metrical optics Fgeo are discussed in the previous chapter, we derive only dFm (in
§3.1) and dFc (in §3.3) for the above lens models. We define dF for convenience
as the sum of dFm and dFc:

dF (w, y) ≡ dFm(w, y) + dFc(w, y). (3.31)

3.4.1 Point Mass Lens

The surface mass density is given by, Σ(ξ) = MLδ
2(ξ), where ML is the lens mass.

F and Fgeo are given in equation (2.32) and (2.33), respectively. In this model
dFc = 0, and dF (= dFm) is given from equation (3.10) by,

dF (w, y) =
i

3w

4x2
+ − 1

(x2
+ + 1)3(x2

+ − 1)
|µ+|1/2 +

1

3w

4x2
− − 1

(x2
− + 1)3(x2

− − 1)
|µ−|1/2 eiw∆T ,

(3.32)
where x± = (y ±

√

y2 + 4)/2 is the position of each image, µ± = 1/2 ± (y2 +

2)/(2y
√

y2 + 4) is the magnification of each image, and ∆T = y
√

y2 + 4/2 +

ln((
√

y2 + 4+y)/(
√

y2 + 4−y)) is the time delay between the double images. The
first and second terms in Eq.(3.32) are the correction terms for the magnifications
of the two images as discussed in §3.1.

In Fig.3.1(a), the amplification factor is shown as a function of w with a fixed
source position y = 0.3. The solid line is the full result |F | in Eq.(2.32); the dotted
line is the geometrical optics approximation |Fgeo| in Eq.(2.33); the dashed line is
the quasi-geometrical optics approximation |Fgeo+dF | in Eq.(2.33) and (3.32). The
oscillatory behavior (in Fig.3.1(a)) is due to the interference between the double
images (see also the discussion in §2.2.1). For large w (& 10), these three lines
asymptotically converge.

In Fig.3.1(b), the differences between F , Fgeo and Fgeo + dF are shown as a
function of w with y = 0.3. The thin solid line is |F − Fgeo|, and the thin dashed
line is |F − (Fgeo + dF )|. The thick solid (dashed) line represents the power of
w−1(w−2). From this figure, for larger w (� 1) F converges to Fgeo with the error
of O(1/w) and converges to Fgeo + dF with the error of O(1/w2). These results
are consistent with the analytical calculation in section 3.1.

3.4.2 Singular Isothermal Sphere

The surface density of the SIS model is characterized by the velocity dispersion
v as, Σ(ξ) = v2/(2ξ), and the deflection potential is given by, ψ(x) = x. F and



Figure 3.1: (a) The amplification factor |F | for a point mass lens as a function
of w with a fixed source position y = 0.3. The solid line is the full result F ; the
dotted line is the geometrical optics approximation Fgeo; the dashed line is the
quasi-geometrical optics approximation Fgeo + dF . (b) The differences between F ,
Fgeo and Fgeo + dF for a point mass lens as a function of w with y = 0.3. The thin
solid line is |F − Fgeo|, and the thin dashed line is |F − (Fgeo + dF )|. The thick
solid (dashed) line represents the power of w−1(w−2).



Figure 3.2: Same as Fig.3.1, but for SIS lens with a source position y = 0.3.

Fgeo are given in equation (2.36) and (2.37), respectively. In the quasi-geometrical
optics approximation, dF is given by,

dF (w, y) =
i

8w

|µ+|1/2
y(y + 1)2

− 1

8w

|µ−|1/2
y(1 − y)2

eiw∆T +
i

w

1

(1 − y2)3/2
eiw[y2/2+φm(y)],

for y < 1,

=
i

8w

|µ+|1/2
y(y + 1)2

+
1

w

1

(y2 − 1)3/2
eiw[y2/2+φm(y)] for y ≥ 1,

(3.33)

where µ± = ±1+1/y, ∆T = 2y, and φm(y) = y+1/2. For y < 1, the first and the
second term in Eq.(3.33) are correction terms for the magnifications of the images
formed in the geometrical optics (i.e. dFm in §3.1), and the third term corresponds
to the diffracted image at the lens center (i.e. dFc in §3.2). For y ≥ 1, the first term
is correction term for the magnification dFm, and the second term corresponds to
the diffracted image at the lens center dFc. Thus, in the quasi-geometrical optics
approximation, for y < 1 the three images are formed, while for y ≥ 1 the double
images are formed in the SIS model.

Fig.3.2 is the same as Fig.3.1, but for the SIS lens with a source position y = 0.3.
In Fig.3.2(a), the behavior is similar to that in the point mass lens (in Fig.3.1(a)).
The oscillation of |Fgeo| is because of the interference between the double images,
while the oscillation of |Fgeo+dF | is because of that among the three images. But,
since the diffracted image is fainter than the others, the difference between |Fgeo|
and |Fgeo + dF | is very small for w & 10 as shown in Fig.3.2(a). As shown in
Fig.3.2(b), the errors decrease as w increases, and the results are consistent with
the analytical calculation.



Figure 3.3: Same as Fig.3.2, but for y = 2.

Fig.3.3 is the same as Fig.3.2, but for the source position y = 2. In Fig.3.3(a),
the damped oscillatory behavior of |F | appears, which looks like the interference
between the images, although only a single image exists in the geometrical optics
(see the behavior of |Fgeo|). For large w (� 1), |F | converges to |Fgeo + dF | which
is given from Eq.(2.37) and (3.33) by,

|Fgeo + dF | = |µ+|1/2 +
1

w(y2 − 1)3/2
cos
[w

2
(y + 1)2

]

+ O(1/w2). (3.34)

The first term is the magnification of the single image formed in the geometrical
optics. The second term is the interference between this image and the diffracted
image formed at the lens center in the quasi-geometrical optics approximation.
Hence, the damped oscillatory behavior is due to the interference between these
images. The amplitude and the period of this oscillation are 1/[w(y2 − 1)3/2]
and w(y + 1)2/2 (in equation (3.34)), respectively. As shown in Fig.3.3(b), the
errors decrease as w increases, and the results are consistent with the analytical
calculation.

3.4.3 Isothermal Sphere with a Finite Core

We investigate the effect of a finite core at lens center on the amplification factor.
We consider the isothermal sphere having a finite core. The deflection potential is
ψ(x) = (x2 + x2

c)
1/2 where xc is a dimensionless core radius, and we set xc = 0.2.

The amplification factor F is numerically calculated in equation (2.27).
Fig.3.4 is the same as Fig.3.1, but for the isothermal sphere with a core model

(core radius is xc = 0.2). The source position is y = 2, and the single image



Figure 3.4: Same as Fig.3.1, but for the isothermal sphere with a core lens. The
core radius is xc = 0.2 and the source position is y = 2.

is formed in the geometrical optics. In this model, the central core of the lens
contributes the integral of F in Eq.(2.26). Denoting dFc as the contribution of F
at the lens center, we obtain,

dFc(w, y) =
eiwy

2/2

2πiw

∫

dx′2 exp

[

−i
{

yx′1 +
√

x′21 + x′22 + (wxc)2 + O(1/w)

}]

.

(3.35)
For wxc . 1 the above equation is the same as dFc in the SIS model (see equation
(3.20)) and dFc ∝ 1/w, but for wxc & 1 dFc exponentially decreases as w increases.
Thus, for the small core xc . 1/w the wave does not feel the existence of the core,
and the behavior of dFc is similar to that for the lens without the core. The results
for F , Fgeo, and dF are consistent with the analytical calculation as shown in
Fig.3.4(b).

3.4.4 NFW lens

The density profile is given in Eq.(2.40) as, ρ(r) = ρs(r/rs)
−1(r/rs + 1)−2 where

rs is the scale length and ρs is the characteristic density. The deflection potential
is given in Eq.(2.43), and the amplification factor F is numerically obtained with
Eq.(2.27). In the quasi-geometrical optics approximation, dF is given by,

dF (w, y) =
i

w

∑

j

∆j |µj|1/2 eiwTj−iπnj +
κs

(wy2)2
eiw[y2/2+φm(y)] (3.36)

where κs = 16πρs(DLDLS/DS)rs is the dimensionless surface density. The first
term in Eq.(3.36) is the corrections for the magnifications of the images (i.e. dFm



Figure 3.5: Same as Fig.3.1, but for the NFW lens for κs = 10 with y/ycr = 2.

in §3.1). µj, Tj, and nj are numerically obtained from the lens equation. The
second term corresponds to the diffracted image at the lens center (i.e. dFc in
§3.2).

Fig.3.5 is the same as Fig.3.1, but for the NFW model for κs = 10 with the
source position y/ycr = 2. A single image is formed in the geometrical optics. In
Fig.3.5(a), the dumped oscillatory behavior of |F | is appeared, similar to the case
of the SIS. For large w, |F | asymptotically converges to |Fgeo+ dF |, which is given
from Eq.(3.36) as,

|Fgeo + dF | ' |µ1|1/2 +
∆1

2w2
|µ1|1/2 +

κs
(wy2)2

cos
{

w
(

T1 − y2/2 − φm(y)
)}

(3.37)

where we set j = 1 in Eq.(3.36) since the single image is formed in the geometrical
optics. The first and the second term in Eq.(3.37) correspond to the image formed
in the quasi-geometrical optics approximation. The third term is the interference
between the single image formed in the geometrical optics and the diffracted image
formed at the lens center. The amplitude and the period of the oscillation are
κs/(wy

2)2 and w (T1 − y2/2 − φm(y)), respectively. As shown in Fig.3.3(b), the
results are consistent with the analytical calculation.





Chapter 4

Wave Effects in the Gravitational

Lensing of Gravitational Waves

from Chirping Binaries

In the previous chapters 2 and 3, we discussed the physical aspect of the wave
optics in the gravitational lensing. In this chapter, we apply the wave optics to the
real observational situations. We consider the gravitational lensing of gravitational
waves from chirping binaries. We take the coalescence of the super massive black
holes (SMBHs) of mass 104−107M� at the redshift z = 1−10 as the sources. SMBH
binary is one of the most promising sources for LISA and will be detected with
very high signal to noise ratio, S/N ∼ 103 (Bender et al. 2000). Since the merging
SMBHs events will be detected for extremely high redshift (z > 5), the lensing
probability is relatively high and hence some lensing events are expected. We
consider two cases for lens models: 1) the point mass lens for compact objects (such
as black holes), and 2) the SIS (Singular Isothermal Sphere) lens for galaxies, star
clusters and CDM (Cold Dark Matter) halos. The wave effects become important
for the lens mass 106−109M� which is determined by the LISA band, 10−4 to 10−1

Hz from Eq.(1.3). The frequency of the gravitational waves from the coalescing
SMBH binary chirps so that we could see wave effects for different frequency in
the lensed chirp signals.

We calculate the gravitationally lensed waveform using the wave optics for the
two lens models: the point mass lens and the SIS. Then, we investigate how ac-
curately we can extract the information on the lens object from the gravitational
lensed signals detected by LISA using the Fisher-matrix formalism (e.g. Cutler
& Flanagan 1994). Cutler (1998) studied the estimation errors for the merging
SMBHs by LISA (see also Vecchio & Cutler 1998; Hughes 2002; Moore & Hellings
2002; Hellings & Moore 2003; Seto 2002; Vecchio 2003). Following Cutler (1998),
we calculate the estimation errors especially for the lens mass and the source posi-
tion. We also calculate the lensing effects on the signal-to-noise ratio. We assume
the 1 yr observation before the final merging and consider the lens mass in the
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Figure 4.1: Orbital configuration of the LISA antenna. From Hughes (2003).

range 106 − 109M�. Then the typical time delay between the double images is
10− 104 sec which is much smaller than 1 yr. Throughout this chapter, we assume
a (ΩM ,ΩΛ) = (0.3, 0.7) cosmology and a Hubble parameter H0 = 70kms−1Mpc−1.

4.1 Gravitationally Lensed Waveform and Param-

eter Estimation

4.1.1 Gravitational Wave Measurement with LISA

We briefly discuss the gravitational wave measurement with LISA (see Cutler 1998;
Bender et al. 2000). LISA consists of three spacecrafts forming an equilateral
triangle and orbits around the Sun, trailing 20◦ behind the Earth (see Fig.4.1).
The sides of the triangle are L = 5×106 km in length, and the plane of the triangle
is inclined at 60◦ with respect to the ecliptic. The triangle rotates annually. The
gravitational wave signal is reconstructed from three data streams that effectively
correspond to three time-varying armlengths (δL1, δL2, δL3). We basically analyze
two data streams given by sI(t) = [δL1(t) − δL2(t)]/L and sII(t) = [δL1(t) +
δL2(t) − 2δL3(t)]/(3)1/2L. These data can be regarded as the response of two 90◦

interferometers rotated by 45◦ to one another (Cutler 1998). The data sI,II(t)
contain both gravitational waves signals hI,II(t) to be fitted by matched filtering
and noises nI,II(t). The latter is constituted by the detector’s noise and binary
confusion noise. As in Cutler (1998), we assume that the noises are stationary,
Gaussian and uncorrelated with each other.

The gravitational wave signals hI,II(t) from a binary are written as

hI,II(t) =

√
3

2

[

F+
I,II(t)h+(t) + F×

I,II(t)h×(t)
]

, (4.1)



where F+,×
I,II (t) are the pattern functions which depend on the source’s angular

position of the binary, its orientation and detector’s configuration. The quantities
h+,×(t) are the two polarization modes of gravitational radiation from the binary.
The direction and the orientation of the binary and the direction of the lens are
assumed to be constant during the observation in a fixed barycenter frame of the
solar system. Further discussion and details about the pattern functions are shown
in Cutler (1998).

4.1.2 Gravitationally Lensed Signal Measured by LISA

We consider the SMBH binaries at redshift zS as the sources. We use a restricted
post-Newtonian approximation for the in-spiral waveform (Cutler & Flanagan
1994). The coalescing time for circular orbit is typically tc = 0.1yr (Mz/106M�)−5/3

×(f/10−4Hz)−8/3 where Mz = (M1M2)
3/5(M1 +M2)

−1/5(1 + zS) is the redshifted
chirp mass. At the solar system barycenter, the unlensed waveforms h̃+,×(f) in
the frequency domain are given by

h̃+(f) = A
[

1 + (L · n)2] f−7/6eiΨ(f),

h̃×(f) = −2iA (L · n) f−7/6eiΨ(f), (4.2)

where L (given by θ̄L, φ̄L) is the unit vector in the direction of the binary’s orbital
angular momentum and n (given by θ̄S, φ̄S) is the unit vector toward the binary.
These vectors are defined in a fixed barycenter frame of the solar system. The
amplitude A and the phase Ψ(f) depend on six parameters; the redshifted chirp
mass Mz and reduced mass µz = M1M2(1+zS)/(M1+M2); the spin-orbit coupling
constant β; a coalescence time tc and phase φc; the angular diameter distance to
the source DS. The amplitude is

A =

√

5

96

π−2/3M5/6
z

DS(1 + zS)2
. (4.3)

where DS(1 + zS)
2 is the luminosity distance to the source. The phase Ψ(f) is

given by,

Ψ(f) = 2πftc−φc−
π

4
+

3

4
(8πMzf)−5/3

[

1 +
20

9

(

743

336
+

11µz
4Mz

)

x + (4β − 16π)x3/2

]

,

(4.4)
where Mz = (M1 +M2)(1 + zS) is the redshifted total mass, and x = (πMt,zf)2/3

is the post-Newtonian expansion parameter which is roughly O(v2/c2).

The gravitationally lensed waveforms h̃L+,×(f) in the frequency domain are given

by the product of the amplification factor F (f) and the unlensed waveforms h̃+,×(f)
(see §2):

h̃L+,×(f) = F (f) h̃+,×(f). (4.5)



where the function F (f) is given in Eq.(2.32) for the point mass lens and in
Eq.(2.36) for the SIS lens. The dimensionless frequency w in these equations (2.32)
and (2.36) is related to the frequency f as, w = 8πMLzf , where MLz = ML(1+zL)
is the redshifted lens mass. We note that the amplification factor F (f) includes
the two lens parameters: the redshifted lens mass MLz and the source position
y1 as discussed in §2.2.1 for the point mass lens and §2.2.2 for the SIS. Using
Eq.(4.1),(4.2) and (4.5), the observed lensed signals h̃Lα(f) (α = I, II) with LISA
are given in the stationary phase approximation as,

h̃Lα(f) =

√
3

2

DS ξ
2
0 (1 + zL)

DLDLS

f

i

∫

d2x Λα(t+ td(x,y)) e−i(φD+φp,α)(t+td(x,y))

×Af−7/6eiΨ(f) e2πiftd(x,y), (4.6)

where

φp,α(t) = tan−1

[

2(L · n)F×
α (t)

1 + (L · n)2F+
α (t)

]

Λα(t) =
[

(2 L · n)2F× 2
α (t) + {1 + (L · n)2}2F+ 2

α (t)
]1/2

.

The Doppler phase is

φD(t) = 2πf(t)R sin θ̄S cos
(

φ̄(t) − φ̄S
)

,

where R = 1 AU, φ̄(t) = 2πt/T (T = 1 yr), and t = t(f) is given by,

t(f) = tc − 5 (8πf)−8/3 Mz

[

1 +
4

3

(

743

336
+

11µz
4Mz

)

x− 32π

5
x3/2

]

. (4.7)

In the no lens limit of |F | = 1 in Eq.(4.5), the lensed signals h̃Lα(f) in Eq.(4.6)
agree with the unlensed ones h̃α(f) in Cutler (1998). We assume the source posi-
tion y is constant during the observation, since the characteristic scale of the in-
terference pattern, ∼ 107AU(MLz/108M�)−1/2(f/mHz)−1 [(DSDL/DLS)/Gpc]1/2,
is extremely larger than the LISA’s orbital radius (1 AU).

Since the lensed signals h̃Lα(f) in Eq.(4.6) are given by double integral, we
approximate h̃Lα(f) in the two limiting cases; 1) geometrical optics limit (f � t−1

d )
and 2) the time delay being much smaller than LISA’s orbital period of (td � 1
yr). In the geometrical optics limit, from Eq.(2.30) we obtain,

h̃Lα(f) =

√
3

2

∑

j

|µj|1/2 Λα(t+ td,j)e
2πiftd,j−iπnje−i(φD+φp,α)(t+td,j ) ×Af−7/6eiΨ(f).

(4.8)

1The source position y is defined in Eq.(2.21) and Fig.2.1.



If the time delay is much smaller than LISA’s orbital period (td � 1 yr), we expand
Λα, φD and φp,α around td = 0 as,

h̃Lα(f) =

√
3

2
Λα(t)e

−i(φD+φp,α)(t) ×Af−7/6eiΨ(f)

×
[

F (f) +
d

dt
{lnΛα − i (φD + φp,α)}

f

2πi

d

df

(

F (f)

f

)

+ O
(

(td/1yr)2
)

]

. (4.9)

Since we consider the lens mass MLz = 106−109M�, the time delay is much smaller
than 1 yr. Thus we use the above equation (4.9) as the lensed waveforms for the
following calculations.

In Fig.4.2, the lensed signals |h̃Lα(f)| (α = I, II) and the unlensed ones |h̃α(f)|
are shown. We show the results from one year before the final merging to the
inner most stable circular orbit (the binary separation is r = 6(M1 + M2)). We
set typical parameters at the SMBH binary masses M1,2z = 106M�, the lens mass
MLz = 108M� and the source position y = 1 for the point mass lens. The angular
parameters are cos θ̄S = 0.3, φ̄S = 5.0, cos θ̄L = 0.8, φ̄L = 2.0, and the source
redshift is zS = 1 (the angular diameter distance is H0DS = 0.386). Therefore the
frequency range is from 5×10−5 to 2×10−3 Hz and the time delay is 4×103 sec. The
strange behavior in the lower frequency f . 10−4 Hz is due to the LISA’s orbital
motion. In this frequency region, however, the difference between the lensed signal
and the unlensed one is small due to the diffraction (see Fig.2.4). On the other
hand, the oscillatory behavior appears in the higher frequency region f & 10−4 Hz.
This critical frequency is determined by the inverse of the lens mass 8πMLz (see
Fig.2.4). The oscillatory amplitude and the period are determined by the product
of the magnifications 2|µ+µ−|1/2 = 2/(y

√

y2 + 4) and the inverse of the time delay,
1/∆td (see the third term of Eq.(2.34)).

4.1.3 Parameter Extraction

We briefly mention the matched filtering analysis and the parameter estimation
errors (Finn 1992; Cutler & Flanagan 1994). We assume that the signal h̃Lα(f) is
characterized by some unknown parameters γi. In the present case, there are ten
source parameters (Mz, µz, β, φc, tc, DS, θ̄S , φ̄S, θ̄L, φ̄L) and two lens parameters
(MLz, y). In the matched filtering analysis the variance-covariance matrix of the
parameter estimation error ∆γi is given by inverse of the Fisher information matrix
Γij as 〈∆γi∆γj〉 = (Γ−1)ij. The Fisher matrix becomes

Γij = 4
∑

α=I,II

Re

∫

df

Sn(f)

∂h̃L∗α (f)

∂γi

∂h̃Lα(f)

∂γj
, (4.10)

where Sn(f) is the noise spectrum. The noise spectrum Sn(f) is the sum of the
instrumental and the confusion noise, and we adopt the same noise spectrum as



Figure 4.2: The lensed signals |h̃Lα(f)| (α = I, II) (solid line) and unlensed ones
|h̃α(f)| (dashed line) measured by LISA. The signals are shown from 1yr before
coalescence to ISCO of r = 6(M1+M2). The redshifted masses of the SMBH binary
is M1,2z = 106M�, the redshifted lens mass isMLz = 108M� and the source position
y = 1. The angular parameters are cos θ̄S = 0.3, φ̄S = 5.0, cos θ̄L = 0.8, φ̄L = 2.0,
and the source redshift is zS = 1 (distance is H0DS = 0.386). The strange behavior
for f . 10−4 Hz is due to the LISA orbital motion, and the difference between the
two signals is small due to the diffraction. On the other hand, the oscillatory
behavior appears for f & 10−4 Hz which is determined by the inverse of the lens
mass 8πMLz (see Fig.2.4). This oscillation is due to the interference between the
double images.



Figure 4.3: The noise spectrum for LISA. The solid line is the instrumental noise,
and the dotted line is the confusion noise. The total noise is the sum of them.

that in Cutler (1998). We show Sn(f) in Fig.4.3, and the solid (dotted) line is
instrumental (confusion) noise. The signal to noise ratio (S/N) is given by

(S/N) 2 = 4
∑

α=I,II

∫

df

Sn(f)

∣

∣

∣
h̃Lα(f)

∣

∣

∣

2

. (4.11)

We computed the variance-covariance matrix Γij for a wide range of the lens pa-
rameters (MLz, y), using the lensed waveform in Eq.(4.9). Since the S/N is very
high for the SMBH merger, the Fisher matrix approach to calculate the estima-
tion errors is valid (Cutler 1998). We integrate gravitational lensed waveform (in
Eq.(4.10) and Eq.(4.11)) from 1 yr before the final merging to the cut-off frequency
fcut when the binary separation becomes r = 6(M1 + M2). Then, the initial fre-
quency is given by,

finit = 4.1 × 10−5

( Mz

106M�

)−5/8

Hz, (4.12)

and the cut-off frequency is

fcut = 4.4 × 10−3

(

M1z +M2z

106M�

)−1

Hz. (4.13)



4.2 Results

In this section, we present numerical results to compute the signal to noise ratio
(S/N) and the errors in estimation parameters. We randomly distribute 100 bi-
naries over various directions and orientations on celestial spheres at zS = 1 (the
distance is H0DS = 0.386). We present the mean value averaged for 100 binaries.

4.2.1 Lensing Effects on the Signal to Noise Ratio

We demonstrate the gravitational lensing effect on the signal to noise ratio (S/N).
In Fig.4.4, the increasing factor of S/N by the gravitational lensing for the point
mass lens is shown for the fixed source position2 y = 0.1, 0.3, 1, and 3 as a function
of the lens mass MLz. The vertical axis is the S/N with the gravitational lensing
divided by the unlensed S/N . Four panels are shown for the various SMBH binary
masses M1,2z = 104, 105, 106, and 107M�. We only show the mean value averaged
for 100 binaries, but the dispersion is negligibly small (less than 5 %). For the lens
mass smaller than 106M� the magnification is very small irrespective of the SMBH
binary masses due to the diffraction effects. In this case the Schwarzschild radius
of the lens mass MLz is smaller than the wavelength of gravitational waves λ ∼ 1
AU, and the waves are not magnified by lensing. This critical lens mass (106M�)
is mainly determined by the inverse of the knee frequency of the LISA’s noise
spectrum, 1/(8πf) ∼ 8×106M�(f/mHz)−1 (see Fig.2.4). But for 107+107M�, the
SMBH binary coalescences at the lower frequency (f ∼ 10−4 Hz), thus the critical
lens mass is shifted for a larger mass (107M�) as shown in the right bottom panel of
Fig.4.4. This tells us that if the lens mass is smaller than 106M�, the effect of the
lens is very small. If the lens mass is larger than 107M�, the damped oscillatory
behavior appears due to the interference between the two images, and the S/N
converges to the geometrical optics limit, |µ|1/2 = (y2 + 2)1/2/[y1/2(y2 + 4)1/4],
which is independent of the lens mass. As y increases from 0.1 (solid line) to
3 (dashed line), the amplification decreases since the magnifications of the two
images (|µ±(y)|) decrease as y increases (see also Fig.2.4).

Fig.4.5 is the same as Fig.4.4, but for the SIS lens model. The behavior is
very similar to that in the point mass lens. For the lens mass larger than 107M�,
the S/N converges to the geometrical optics limit, |µ|1/2 = (2/y)1/2 for y ≤ 1 and
|µ|1/2 = (1 + 1/y)1/2 for y ≥ 1. As y increases from 0.1 (solid line) to 3 (dashed
line), the amplification decreases (see also Fig.2.5).

4.2.2 Parameter Estimation for the Lens Objects

In this section, we show the parameter estimation for the lens objects. We show the
results for the SMBH binary with masses 106 + 106M�, because we found S/N is
higher than the other binary masses (M1,2z = 104, 105 and 107M�). We distribute

2The source position y is defined in Eq.(2.21), and see also Fig.2.1.



Figure 4.4: The increasing factor in S/N due to the gravitational lensing by the
point mass lens for the various SMBH binary masses M1,2z = 104, 105, 106, and
107M�. The horizontal axis is the redshifted lens mass; the vertical axis is the
lensed S/N divided by the unlensed S/N . The source position is fixed at y =
0.1, 0.3, 1, and 3. For MLz . 106M�, the magnification is very small due to the
diffraction effect irrespective of the SMBH binary masses. For MLz & 107M�,
the damped oscillatory patterns appear due to the interference between the two
images, and this behavior converge in the geometrical optics limit, |µ|1/2 = (y2 +
2)1/2/[y1/2(y2 + 4)1/4].



Figure 4.5: Same as Fig.4.4, but for the SIS lens model. For MLz & 107M�, the
results converge in the geometrical optics limit, |µ|1/2 = (2/y)1/2 for y ≤ 1 and
|µ|1/2 = (1 + 1/y)1/2 for y ≥ 1.



Figure 4.6: The estimation errors for the redshifted lens mass ∆MLz (left panel)
and the source position ∆y (right panel) for the point mass lens. The results are
presented for the SMBH binary of masses 106 + 106M� at zS = 1. The errors
are normalized by S/N = 103 and simply scale as (S/N)−1. For MLz . 107M�
the errors are relatively large, since the effect of lensing is very small due to the
diffraction. For MLz & 108M� the geometrical optics approximation is valid, and
errors converge to constants.

the 100 binaries over the various directions and the orientations at zS = 1, and the
mean value of the S/N without lensing is 2600 in these 100 binaries. We show the
mean value of errors averaged for 100 binaries, for MLz . 107M� the dispersion is
relatively large (. 40%), but for MLz & 107M� the results converge to that in the
geometrical optics limit and the dispersion is negligibly small.

In Fig.4.6, the estimation errors for the redshifted lens mass ∆MLz (left panel)
and the source position ∆y (right panel) are shown as a function of MLz with
y = 0.1, 0.3, 1, and 3 for the point mass lens. We use the units of S/N = 103, and
the results (∆MLz, ∆y) scale as (S/N)−1. For MLz . 107M� the estimation errors
are relatively large & 10%, since the effect of lensing on the signals is very small
due to the diffraction. For MLz & 108M� the geometrical optics approximation is
valid, and the errors converge to a constant in Fig.4.6. The redshifted lens mass
and the source position can be determined up to the accuracy of ∼ 0.1%, as shown
in Fig.4.6. The errors in the geometrical optics limit are well fitted by (see the
Appendix D),

∆MLz

MLz
=

1

S/N
×
√

y(y2 + 2)(y2 + 4)5/4

2τ
,



Figure 4.7: Same as Fig.4.6, but as a function of y. We note that even for y & 10
we can extract the lens information. Then the lensing cross section (∝ y2) increases
an order of magnitude larger than that for the usual strong lensing of light (y = 1).

∆y

y
=

1

S/N
×
√

y2 + 2(y2 + 4)3/4

2
√
y

, (4.14)

where S/N is in the unlensed case, and τ = ∆td/4MLz = y
√

y2 + 4/2+ln((
√

y2 + 4+

y)/(
√

y2 + 4− y)). Thus, one could determine the lens parameters, the redshifted
lens mass and the source position, up to the accuracy of ∼ (S/N)−1. The above
equations (4.14) are valid if the time delay ∆td is much smaller than the LISA’s
orbital period 1 yr. If the time delay ∆td becomes comparable to 1 yr, the LISA’s
orbital motion affects the results.

Fig.4.7 is the same as Fig.4.6, but as a function of y. For y & 1, the errors
are convergent to the geometrical optics limit of Eq.(4.14) irrespective of the lens
mass. As y increases, the time delay td increases, and the geometrical optics
limit (ftd � 1) is valid. We note that even for y & 10 one can extract the lens
information. For light the observable is the lensed flux which is proportional to the
magnifications, ∝ |µ±|, while for gravitational waves the observable is the lensed
amplitude which is proportional to the square root of the magnifications, ∝ |µ±|1/2.
Thus, it is possible to detect the faint image |µ| � 1 by the gravitational waves.
For example, let us consider the case where the flux ratio of a brighter image to a
fainter one is 100 : 1. Then the amplitude ratio is 10 : 1 so that the fainter image
can be observed even if the source position is far from the Einstein radius in the
case of gravitational waves. Denoting the largest source position for which one can
extract the lens parameters as ycr, we approximate the errors in Eq.(4.14) for the



Figure 4.8: The estimation errors for the redshifted lens mass ∆MLz (left) and
the source position ∆y (right) for the SIS model. The results are presented for
the SMBH binary of masses 106 + 106M� at zS = 1. The errors are normalized
by S/N = 103 and simply scale as (S/N)−1. Even for y = 3 (a single image is
formed in the geometrical optics limit), the lens parameters can be extracted at
MLz ∼ 106 − 108M� due to the wave effects.

large y limit; ∆γ/γ ' (S/N)−1y2, where γ = MLz, y. Then we obtain

ycr ' 10

(

∆γ/γ

0.1

)1/2 (
S/N

103

)1/2

. (4.15)

Thus the lensing cross section (∝ y2
cr) increases an order of magnitude larger than

that for the usual strong lensing of light (ycr = 1) (e.g. Turner, Ostriker & Gott
1984).

In Fig.4.8, the estimation errors for the SIS model are shown. ForMLz . 107M�
the behavior is similar for the point mass lens. But for MLz & 108M� the behavior
strongly depends on y. The errors in the quasi-geometrical optics approximation
are well fitted by (see the Appendix D),

∆MLz

MLz
=

∆y

y
=

1

S/N
× 2

√

1 − y2

2y + 1
, (4.16)

for y < 1. We note that even for y = 3 the lens parameters can be extracted for
MLz ∼ 106 − 108M� as shown in Fig.4.8. This is because the diffracted image
is newly formed at the lens center by the wave effects (see the discussion §4.3).
Hence the double images are formed even for y > 1, and the information on the
lens can be extracted. The errors for y > 1 are given in the quasi-geometrical



Figure 4.9: Same as Fig.4.8, but as a function of y. We note that even for y > 1 we
can determine the lens parameters. Then the lensing cross section (∝ y2) becomes
larger than that in the geometrical optics approximation (y = 1).

optics approximation as (see the Appendix D),

∆MLz

MLz
=

1

S/N
× 32πy(y − 1)2

√

y2 − 1

2y + 1
MLz〈f〉, (4.17)

∆y

y
=

1

S/N
× 16π(y2 − 1)3/2(y − 1)

2y + 1
MLz〈f〉, (4.18)

where 〈f〉 is defined by,

〈f〉2 = (S/N)2 ×
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−1

,

and the mean value of 〈f〉 averaged for 100 binaries is 1.2 mHz. For y = 1,
the errors decrease as lens mass increases as shown in Fig.4.8, because the errors
converge to the results in the quasi-geometrical optics limit of Eq.(4.16) - (4.18)
which vanish at y = 1. As a result, if y > 1, the errors asymptotically increase
with the increase of the lens mass, but if y < 1, they asymptotically converge to
constants.

Fig.4.9 is the same as Fig.4.8, but as a function of y. We note that even for
larger y & 1 we can extract the lens information. Thus the lensing probability
(∝ y2) to determine the lens parameters increases as compared with the results in
geometrical optics limit for the lens objects in the mass range 106 − 108M�.



4.2.3 Lensing Effects on the Estimation Errors of the Bi-

nary Parameters

We discuss the gravitational lensing effects on the estimation errors of the SMBH
binary parameters. We study five binary parameters; the redshifted chirp mass
Mz, the reduced mass µz, the distance to the source DS and the angular resolution
(θ̄S, φ̄S). We find that the estimation errors of these parameters decrease because
S/N increases by lensing (see Fig.4.4 and 4.5). The error ∆γ is roughly proportional
to the inverse of the S/N as ∆γ ∝ (S/N)−1 (see Eq.(4.10) and (4.11)).

4.2.4 Results for Various SMBH Masses and Redshifts

So far we presented the results for equal mass SMBH binaries with redshift zS = 1.
In this section, we comment on the results for the case of various (unequal) SMBH
masses 104 − 107M� and redshifts zS = 1 − 10.

The critical lens mass in which the wave effects become important (106−108M�)
is mainly determined by the inverse of the knee frequency of the LISA’s noise
spectrum, ∼ 8 × 106M� (f/mHz)−1, independent of the binary mass. But for
the massive total mass binary (M1z + M2z) & 107M�, the binary coalescences at
the lower frequency (∼ 10−4Hz), thus the critical lens mass is shifted for larger
mass (107 − 109M�). For the larger lens mass MLz & 108M�, the results (the S/N
increase and the estimation errors) converge to that in the geometrical optics limit
irrespective of the binary mass. The estimation errors in Fig.4.6-4.9 are the case
of 106 − 106M� binary at redshift zS = 1 and are normalized to S/N = 103 and
simply scale as (S/N)−1. In order to translate the results into the various unequal
SMBH binaries, we present the S/N for binary masses M1,2z = 104 − 107M� with
redshifts zS = 1, 3, 5, 10 in Table.4.1. We assume 1 yr observation of in-spiral
phase before final merging. The results are the mean value of 100 binaries which
are randomly distributed at each redshift, and the dispersion is relatively large
∼ 50%. From Table 4.1, one could translate the results in Fig.4.6-4.9 into errors
in real situations.

We also comment on the results for the case with only hI data available, as
opposed to the combination of hI and hII data that we used. In this case, the
S/N increase in Fig.4.4 and 4.5 is not changed, but the estimation errors are
slightly larger (∼ 30%) than that in Fig.4.6-4.9 for MLz . 107M� if the errors are
normalized to S/N = 103. We note that the S/N is

√
2 times smaller than that in

the case of the two data available in Table 4.1.

4.3 Lensing Event Rate

We discuss the event rate of merging SMBHs and estimate the lensing probability
and the lensing event rate. The expected rate of merging SMBHs detected by LISA
is in the range 0.1 − 102 events per year (Haehnelt 1994,1998). Recently, Wyithe



Binary Masses (M�) zS = 1 zS = 3 zS = 5 zS = 10

107 + 107 1038 270 147 66

107 + 106 519 135 74 33

107 + 105 175 46 25 11

107 + 104 52 14 7 3

106 + 106 2575 669 365 164

106 + 105 1517 394 215 97

106 + 104 508 132 72 32

105 + 105 877 228 124 56

105 + 104 310 81 44 20

104 + 104 132 34 19 8

Table 4.1: The signal to noise ratio (S/N) for the various binary masses 104−107M�
with redshift zS = 1, 3, 5, 10. We assume 1 yr observation of in-spiral phase before
final merging.

& Loeb (2003) suggested that some hundreds detectable events per year could be
expected, considering the merger rate at exceedingly high redshift (z > 5 − 10).
Thus we take ∼ 300 events per year as the merging event rate.

We consider the lens objects distributed over the universe and calculate the
lensing probability for each lens model. For the point mass lens, we take the
compact objects (106 − 109M�) such as black holes as lens. Denoting the mass
density parameter of compact objects as Ωco, the lensing probability for a source
at redshift zS is (Schneider, Ehlers & Falco 1992),

P (zS) =
3

2
Ωcoy

2
cr

∫ zS

0

dzL
(1 + zL)

2

H(zL)/H0

H0DLS(zL, zS) H0DL(zL)

H0DS(zS)
, (4.19)

where H(z) is the Hubble parameter at redshift z. The cosmological abundance of
the compact objects in the mass range 106−109M� is limited by Ωco ≤ 0.01 by the
search for multiple images in radio sources (Wilkinson et al. 2001; see also Nemiroff
et al. 2001). In Table 4.2, we show the upper limit on the lensing probability for
the point mass lens. Since we set ycr = 10 (Eq.(4.15)), the lensing probability
is one hundred times larger than that normally assumed for the strong lensing of
light (ycr = 1). As shown in Table 4.2, the upper limit of the lensing probability is
very high (almost 1) and is typically ∼ (Ωco/10−2). The lensing event rate is the
product of the merging rate (∼ 300 per year) and the lensing probability, so that
the lensing events will be 1 event per year if Ωco = 10−4.

For the SIS model we take CDM halos (106 − 109M�) as the lens objects (e.g.



Lens Model zS = 1 zS = 3 zS = 5 zS = 10

Point mass lens < 0.21 < 1.1 < 2.0 < 3.9

SIS 7.2 × 10−5 8.1 × 10−4 2.0 × 10−3 4.7 × 10−3

Table 4.2: The lensing probability by the lens mass in the range 106 − 109M� with
the source redshift zS = 1, 3, 5, 10. For the point mass lens, we give the upper
limit which is determined by the observational constraint on the abundance of the
compact objects. When the lensing probability is more than one, the lensing occurs
sometimes. For the SIS, CDM halos are assumed to be lenses. The presented values
are for the case of S/N = 103, and hence the results are somewhat overestimated
for the binaries of S/N < 103 in Table 4.1. If the expected rate of merging SMBHs
is ∼ 300 per year (Wyithe & Loeb 2003), then the lensing events will be detected
1 event per year.

Narayan & White 1988). The lensing probability is

P (zS) = πy2
cr

∫ zS

0

dzL
(1 + zL)2

H(zL)/H0

H0DLS(zL, zS) H0DL(zL)

H0DS(zS)

∫ 109M�

106M�

dMLvNv(v, zL),

(4.20)
where Nv is the comoving number density of the lens and is assumed to be given
by the Press-Schechter velocity function (Press & Schechter 1974) with σ8 = 1.
In Table 4.2, we show the lensing probability for the SIS model. We set ycr = 3
(see Fig.4.8) and hence the lensing probability is almost ten times larger than that
for light (ycr = 1). As shown in Table 4.2, the lensing probability is typically
∼ 10−4 − 10−3. The merger rate is ∼ 300 events per year at high redshift (z > 5),
then the lensing events would be 1 event per year.

We note that the results in Table 4.2 are for the case of the S/N = 103, and are
somewhat overestimated for the binaries of S/N < 103 in Table 4.1. For example,
the lensing probability is proportional to (S/N) from Eq.(4.15) for the point mass
lens, and it is appropriate to use ycr = 1 for S/N < 103 in the SIS. In the case
of the high event rate (∼ 300 events/year), many fainter signals (S/N � 103) are
expected, and the errors in Fig.4.6-4.9 are worse for these binaries.

Next, we discuss how we can identify the lensing signal. If the lensing event
occurs, the amplitude and the arrival time of the gravitational waves are changed
by lensing. But the other features (such as binary mass) are not changed. Thus, if
the two signals have the same binary parameters (such as chirp mass) except for the
amplitude and the arrival time, that would be a signature of gravitational lensing in
the geometrical optics limit. More generally, oscillatory behavior in the waveform
|h̃L(f)| is a signature of gravitational lensing (see Fig.4.2). However it will be
difficult to identify the source and the lens objects in the sky, since the angular
resolution of the LISA is ∼ 1 deg (see Cutler 1998). Furthermore, the gravitational
wave amplitude is changed by the lensing magnification and hence one must assume



the lens model in order to determine the distance to the source. (Effect of lensing
on measuring the distance is recently discussed in Holz & Hughes (2002).) As
one determines the distance to the source DS(zS), The redshift zS(DS) could be
determined if the distance to the source DS(zS) could be measured assuming the
cosmological parameters (see Hughes 2002).



Chapter 5

Summary

In this thesis, we discussed the wave optics in gravitational lensing of gravitational
waves and its application to the gravitational wave observations in the near future.

We review the wave optics in the gravitational lensing, which is more funda-
mental than the geometrical optics, in §2. If the wavelength λ of the gravitational
waves is larger than the Schwarzschild radius of the lens mass ML, the wave optics
should be used. In the short wavelength limit λ → 0, the wave optics is reduced
to the geometrical optics limit. We use the diffraction integral formula to obtain
the gravitationally lensed waveform. We show the wave optics for the various lens
models: the point mass lens, the SIS model, the NFW model, and the binary lens.

In §3, we studied the gravitational lensing in the quasi-geometrical optics ap-
proximation which is the geometrical optics including the corrections arising from
the effects of the finite wavelength. Theses correction terms can be obtained an-
alytically by the asymptotic expansion of the diffraction integral in powers of the
wavelength λ. The first term, arising from the short wavelength limit λ → 0,
corresponds to the geometrical optics limit. The second term, being of the order
of λ/ML (ML is the Schwarzschild radius of the lens), is the first correction term
arising from the diffraction effect. By analyzing this correction term, we obtain
the following results:

• The lensing magnification µ is modified to µ(1 + δ), where δ is of the order
of (λ/ML)

2.

• If the lens has cuspy (or singular) density profile at the center ρ(r) ∝ r−α

(0 < α ≤ 2) the diffracted image is formed at the lens center with the
magnification µ ∼ (λ/ML)

3−α. Thus if we observe this diffracted image by
the various wavelength (e.g. the chirp signal), the slope α can be determined.

In §4, we discussed the gravitational lensing of gravitational waves from chirping
binaries. The SMBH binary is taken as the source detected by LISA, and the two
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simple lens models are considered: the point mass lens and the SIS model. We
calculate the lensing effects on the signal to noise ratio (S/N) and how accurately
the information of the lens object, its mass, can be extracted from the lensed
signal. As expected, for the lens mass smaller than 108M�, the wave effects are
very important to calculate the S/N and the errors in the estimation parameters.
We obtain the following results:

• For the lens mass smaller than 106M� the signals are not magnified by lensing
due to the diffraction effect. For the lens mass larger than 108M� the lens
parameters can be determined within (very roughly) ∼ 0.1% [(S/N)/103]−1.

• The lensing cross section to determine the lens parameters is order of mag-
nitude larger than that for light.

Cutler & Thorne (2003) suggest that the mergers of compact binaries will
be detected before ∼ 2010 or sooner by the ground based interferometers. This
is because in about 2007 the first generation interferometers (TAMA300, LIGO,
VIRGO, GEO) will be upgraded to produce the second generation detectors (ad-
vanced LIGO, LCGT), and the neutron star mergers will be detected by these
upgraded detectors. The space interferometer LISA will be launched in ∼ 2011.
There are some known Galactic binaries which LISA is guaranteed to observe. The
mergers of SMBHs are also some of the promising candidates. Furthermore, the
space interferometer DECIGO/BBO is planed to construct in ∼ 2020, and will de-
tect ∼ 105 events yr−1 of the neutron star mergers. Hence, the gravitational wave
astronomy will be established at the broad frequency band in the near future, and
the lensing events will also be expected for these various detectors.
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Appendix A

Path Integral Formula for the

Wave Optics

We present the path integral formula which was developed by Nakamura & Deguchi
(1999) to derive the diffraction integral.

A.1 Basic Wave Equation

We consider the scalar wave φ(t, r) propagating under the curved space-time due
to the gravitational potential U(r) of the lens objects (see also §2.1.1). The wave
equation in the frequency domain is given in equation (2.7) as,

(

∇2 + ω2
)

φ̃ = 4ω2Uφ̃. (A.1)

where ω is the frequency.
We show the lensing configuration in Fig.A.1 for the source, the lens, and the

observer. The source is located at the center of the coordinate system. rl, ro, and
rlo are distances to the lens, to the observer, and from the lens to the observer,
respectively. We use the spherical coordinate system (r, θ, φ), then the observer is
located at ro = (ro, θo, φo) with θo � 1.

In the no lens limit (U = 0), the solution of the wave equation (A.1) is,

φ̃0 = A
eiωr

r
, (A.2)

where A is the amplitude. With the above equation (A.2) and the amplification
factor F of the wave amplitude due to the lensing, the gravitationally lensed wave
φ̃ is written as,

φ̃(ω, r) = F (ω, r)
eiωr

r
. (A.3)

Inserting this φ̃ into the equation (A.1), we obtain,

∂2F

∂r2
+ 2iω

∂F

∂r
+

1

r2
∇2
θF = 4ω2UF, (A.4)
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Figure A.1: Lensing configuration for the source, the lens, and the observer. rl, ro,
and rlo are the distances between them. The angles are very small: θo, θs � 1.

where

∇2
θ =

1

θ

1

∂θ

(

θ
1

∂θ

)

+
∂2

∂φ2
.

We assume that the wave length ∼ 1/ω is much smaller than the scale on which
F varies, then we have |∂2F/∂r2| � |ω ∂F/∂r| and the first term in Eq.(A.4) is
negligible. The equation (A.4) is rewritten as,

i
∂F

∂r
= − 1

2ωr2
∇2
θF + 2ωUF (A.5)

The above equation (A.5) is the same as the Schrödinger equation, if we consider
r as the time, ωr2 as the mass, 2ωU as the potential, and F as the wave function.

A.2 Path Integral

The wave equation (A.5) can be solved by using the path integral (e.g. Saku-
rai 1994). From the analogy of Eq.(A.5) with the Schrödinger equation, the La-
grangian is given by,

L(r, θ, θ̇) =
1

2
ωr2|θ̇|2 − 2ωU(r, θ) (A.6)

where θ = θ(cosφ, sinφ) and θ̇ = dθ/dr. Then the solution of the wave equation
(A.5) at the observer ro is obtained with Eq.(A.6) as,

F (ω, ro) =

∫

Dθ(r) exp

(

i

∫ ro

0

drL

)

. (A.7)



Figure A.2: The thick solid line is the path in the integration of Eq.(A.7). The
dashed line is the lens plane on which the wave is scattered.

We assume the thin lens approximation in which the gravitational potential of the
lens U does not vanish only on the lens plane. Then, the potential U is rewritten
as,

U(r, θ) =
1

2
δ(r − rl)ψ̂(θ), (A.8)

where ψ̂ is the deflection potential as defined in Eq.(2.14).
We calculate the integration in Eq.(A.7) along the path denoted the thick solid

line from the source to the observer as shown in Fig.A.2. The wave is scattered only
on the lens plane at r = rl. We note that θ̇ in the Lagrangian (A.6) corresponds
to the slope of this thick solid line. Hence we obtain,

θ̇ = 0, for 0 ≤ r < rl,

=
1

r2

rlro
rlo

(θo − θl) , for rl < r ≤ ro. (A.9)

From Eqs.(A.6), (A.8) and (A.9), the integrand of Eq.(A.7) is written as,
∫ ro

0

drL = ω
rlro
2rlo

|θl − θo|2 − ωψ̂. (A.10)

Thus, the amplification factor F at the observer ro is obtained from Eqs.(A.7) and
(A.10) as,

F (ω, ro) =
ω

2πi

rlro
rlo

∫

d2θl exp

[

iω

{

rlro
2rlo

|θl − θo|2 − ψ̂(θl)

}]

, (A.11)

where F is normalized such that F = 1 in the no-lens limit (ψ̂ = 0). The result
(A.11) is coincident with the amplification factor in Eq.(2.19) which is derived by
using the Kirchhoff diffraction integral.



Figure A.3: Same as Fig.A.2, but for the multi-lens system with N lens planes
(dashed lines).

A.3 Application to Multi-Lens System

We present the application of the path integral formula to the multi-lens system
which was developed by Yamamoto (2003). We consider N lens planes which are
located at r = rlj (j = 1, 2, ···, N) with the deflection potential ψ̂j(θ) (see Fig.A.3).
Then, the gravitational potential U in Eq.(A.8) is rewritten as,

U(r, θ) =
1

2

N
∑

j=1

δ(r − rlj)ψ̂j(θ). (A.12)

θ̇ in Eq.(A.9) is also rewritten as,

θ̇ = 0, for 0 ≤ r < rl1,

=
1

r2

rljrl(j+1)

rlj,l(j+1)

(

θl(j+1) − θlj
)

, for rlj < r < rl(j+1),

=
1

r2

rlNro
rlN,o

(θo − θlN) , for rlN < r ≤ ro, (A.13)

where rlj,l(j+1) = rl(j+1) − rlj for j = 1, 2, · · ·, N − 1, and rlN,o = ro − rlN . From
above equations (A.12) and (A.13), the equation (A.10) is rewritten as,

∫ ro

0

drL = ω

[

N−1
∑

j=1

rljrl(j+1)

2rlj,l(j+1)

∣

∣θl(j+1) − θlj
∣

∣

2
+
rlNro
2rlN,o

|θo − θlN |2
]

− ω
N
∑

j=1

ψ̂j(θlj).

(A.14)



The amplification factor is obtained from Eqs.(A.7) and (A.14) as,

F (ω, ro) =
ω

2πi

rl1rl2
rl1,l2

∫

d2θl1 exp

[

iω

{

rl1rl2
2rl1,l2

|θl1 − θl2|2 − ψ̂1(θl1)

}]

× ω

2πi

rl2rl3
rl2,l3

∫

d2θl2 exp

[

iω

{

rl2rl3
2rl2,l3

|θl2 − θl3|2 − ψ̂2(θl2)

}]

·
·
·

× ω

2πi

rlNro
rlN,o

∫

d2θlN exp

[

iω

{

rlNro
2rlN,o

|θlN − θo|2 − ψ̂N (θlN)

}]

,

where F is normalized such that F = 1 in no lens limit (ψ̂j = 0 for all j).





Appendix B

Numerical Computation for the

Amplification Factor

We present the method for the numerical integration of the amplification factor F
discussed in §2.1.3. The amplification factor is given in Eq.(2.26) as,

F (w,y) =
w

2πi

∫

d2x exp[iwT (x,y)], (B.1)

where w is the frequency and y is the source position. The time delay T is given
in Eq.(2.24) as,

T (x,y) =
1

2
|x − y|2 − ψ(x) + φm(y), (B.2)

where ψ is the deflection potential of the lens and φm is the additional phase in F .
Since the integrand of F is rapidly oscillating function especially for large w, it is
time consuming to numerically calculate F .

B.1 Axially Symmetric Lens Model

If the lens is axially symmetric, the potential ψ(x) is a function of x = |x| and the
amplification factor F is reduced to the simple form given in Eq.(2.27):

F (w, y) = −iweiw[y2/2+φm(y)]

∫ ∞

0

dx x J0(wxy)e
iw[x2/2−ψ(x)] (B.3)

where J0 is the Bessel function of zeroth order. Changing the integral variable
from x to z = x2/2 in the above equation (B.3), we obtain,

F (w, y) =

∫ ∞

0

dzf(z : w, y) eiwz (B.4)

where the function f is defined by,

f(z : w, y) ≡ −iweiw[y2/2+φm(y)]J0(wy
√

2z)e−iwψ(
√

2z). (B.5)
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Thus, we obtain the Fourier integral (B.4). We present the method for computing
Fourier integral in Numerical Recipes (Press et al. 1992). The equation (B.4) is
rewritten as,

F (w, y) =

∫ b

0

dzf(z : w, y) eiwz +

∫ ∞

b

dzf(z : w, y) eiwz,

=

∫ b

0

dzf(z : w, y) eiwz − f(b : w, y)eiwb

iw
+
f ′(b : w, y)eiwb

(iw)2
− · · ·,

(B.6)

where f ′ = ∂f/∂b. The first term of the above equation (B.6) is evaluated by
numerical integration directly. For the series of the above equation, we use the
integration by parts. Since f(b : w, y) ∝ b−1/4 for b � 1 from Eq.(B.5),1 the
asymptotic expansion in Eq.(B.6) converges for large b.

B.2 Non-axially Symmetric Lens Model

For the non-axially symmetric lens model, the amplification factor F in Eq.(B.1)
is rewritten as,

F (w,y) =
w

2πi
eiw[y2/2+φm(y)]

∫ ∞

0

dx x eiwx
2/2

∫ 2π

0

dθ e−iw[xy cos θ+ψ(x,θ)], (B.7)

where θ is defined as x · y = xy cos θ. Similarly for the previous case, we use the
integral variable z = x2/2 in the above equation (B.7), we obtain,

F (w,y) =

∫ ∞

0

dzf(z : w,y) eiwz (B.8)

where f is defined by,

f(z : w,y) ≡ w

2πi
eiw[y2/2+φm(y)]

∫ 2π

0

dθ e−iw[y
√

2z cos θ+ψ(
√

2z,θ)]. (B.9)

Thus we can evaluate the above integral (B.8) using the method in the previous
section.

1Note that J0(x) ∝ x−1/2 for x � 1 (e.g. Abramowitz & Stegun 1970).



Appendix C

Asymptotic Expansion of the

Amplification Factor for

Non-axially Symmetric Lens

Models

In §3.1, we considered the asymptotic expansion of the amplification factor F in
powers of the inverse of the frequency 1/w for the axially symmetric lens model for
simplicity. In this Appendix, we consider the expansion of F for the non-axially
symmetric lens model.

In this case, the expansion of T (x,y) around the j-th image position xj in
Eq.(2.29) is rewritten as,

T (x,y) = Tj +
1

2

∑

a,b

Tabx̃ax̃b + O(x̃3), (C.1)

where x̃ = x − xj, Tj = T (xj,y), and Tab = ∂a∂bT (xj,y) is a 2 × 2 matrix. We
change the variable from x̃a to za =

∑

bAabx̃b in order to diagonalize the matrix
Tab in the above equation (C.1). Here, Aab satisfies,

∑

a,b

TabAacAbd = λcδcd, (C.2)

where λc is the eigenvalue of Tab. Thus, the equation (C.1) is simply rewritten as,

T (x,y) = Tj +
1

2

(

λ1z
2
1 + λ2z

2
2

)

+ O(z3). (C.3)

The above result is similar to the equation (3.1) in the case of the axially symmetric
lens. The magnification µj and the coefficient nj in Fgeo of equation (2.30) are also
rewritten as, µj = 1/|λ1λ2| and nj = 1/2 − sign(λ1)/4 − sign(λ2)/4.
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We expand T (x,y) in Eq.(C.1) up to the fourth order of x̃ as,

T (x,y) = Tj +
1

2

∑

a,b

Tabx̃ax̃b +
1

6

∑

a,b,c

∂a∂b∂cT (xj,y)x̃ax̃bx̃c

+
1

24

∑

a,b,c,d

∂a∂b∂c∂dT (xj,y)x̃ax̃bx̃cx̃d + O(x̃5). (C.4)

Changing the variable x̃a to za, the above equation (C.4) is rewritten as,

T (x,y) = Tj +
1

2

(

λ1z
2
1 + λ2z

2
2

)

+
∑

a,b,c

Mabc zazbzc +
∑

a,b,c,d

Nabcd zazbzczd + O(z5),

(C.5)

where Mabc and Nabcd are defined by,

Mabc =
1

6

∑

d,e,f

∂d∂e∂fT (xj,y) AadAbeAcf ,

Nabcd =
1

24

∑

e,f,g,h

∂e∂f∂g∂hT (xj,y) AaeAbfAcgAdh.

Inserting the above equation (C.5) to (2.26), we obtain,

F (w,y) =
1

2πi

∑

j

eiwTj

∫

d2z′ exp

[

i

{

1

2

(

λ1z
′2
1 + λ2z

′2
2

)

+
1√
w

∑

a,b,c

Mabc z
′
az

′
bz

′
c

+
1

w

∑

a,b,c,d

Nabcd z
′
az

′
bz

′
cz

′
d + O(w−3/2)

}]

, (C.6)

where we change the integral variable from za to z′a =
√
wza and we use d2x =

detA d2z = d2z. We expand the above equation (C.6) in powers of 1/w as,

F (w, y) =
1

2πi

∑

j

eiwTj

∫

d2z′ei(λ1z′21 +λ2z′22 )/2

[

1 +
i√
w

∑

a,b,c

Mabc z
′
az

′
bz

′
c

+
1

w







−1

2

(

∑

a,b,c

Mabcz
′
az

′
bz

′
c

)2

+ i
∑

a,b,c,d

Nabcdz
′
az

′
bz

′
cz

′
d







+ O(w−3/2)



 .

(C.7)

The first term of the above equation (C.7) is the amplification factor in the ge-
ometrical optics limit Fgeo in equation (2.30). The integral in the second term
vanishes because the integrand is an odd function of z′a. The third term is the



leading correction term, being proportional to 1/w, arising from diffraction effect.
Integrating the above equation (C.7), we obtain,

F (w,y) =
∑

j

|µj|1/2
(

1 +
i

w
∆j

)

eiwTj−iπnj + O(w−2), (C.8)

where

∆j =
15

2

(

M2
111

λ1|λ1|2
+ 3

M111M122

|λ1|2λ2

+ 3
M112M222

λ1|λ2|2
+

M2
222

λ2|λ2|2
)

− 3

(

N1111

|λ1|2
+ 2

N1122

λ1λ2
+
N2222

|λ2|2
)

(C.9)

and ∆j is the real number.





Appendix D

Estimation Errors in the

Geometrical Optics Limit

To evaluate the estimation errors ∆MLz,∆y in the geometrical optics limit, we
consider the simple waveform

h̃L(f) =
(

|µ+|1/2 − i |µ−|1/2 e2πif∆td
)

× h̃(f), (D.1)

where h̃ ∝ A is the unlensed signal and ∆td ∝ MLz, with three parameters γi =
(lnMLz, y, lnA). Then, the Fisher matrix Γij(i, j = 1, 2, 3) in Eq.(4.10) can be
analytically obtained as,

Γ11 = (2π∆td)
2 |µ−| (fh̃|fh̃),

Γ12 = 4π2∆td
∂∆td
∂y

|µ−| (fh̃|fh̃),

Γ13 = 0,

Γ22 =

(

2π
∂∆td
∂y

)2

|µ−| (fh̃|fh̃) +
1

4

[

1

|µ+|

(

∂|µ+|
∂y

)2

+
1

|µ−|

(

∂|µ−|
∂y

)2
]

(h̃|h̃),

Γ23 =
1

2

∂

∂y
(|µ+| + |µ−|) (h̃|h̃),

Γ33 = (|µ+| + |µ−|) (h̃|h̃), (D.2)

and Γji = Γij. (h̃|h̃) and (fh̃|fh̃) in the above equation (D.2) are,

(h̃|h̃) = (S/N)2 = 4

∫

df

Sn(f)

∣

∣

∣
h̃(f)

∣

∣

∣

2

,

(fh̃|fh̃) = 4

∫

df

Sn(f)

∣

∣

∣
fh̃(f)

∣

∣

∣

2

. (D.3)

The S/N is the signal to noise ratio for the unlensed signal h̃. The estimation er-
rors can be analytically obtained by the inverse of the Fisher matrix, ∆MLz/MLz =
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[(Γ−1)11]
1/2 and ∆y/y = [(Γ−1)22]

1/2/y. Using the geometrical optics approxima-
tion, f∆td � 1, we obtain the errors with Eq.(D.2) and (D.3) as

∆MLz

MLz

=
1

S/N
×
√

|µ+| + |µ−|
|µ+µ−|

∣

∣

∣

∣

2
∂

∂y
ln ∆td

/

∂

∂y
ln

∣

∣

∣

∣

µ+

µ−

∣

∣

∣

∣

∣

∣

∣

∣

,

∆y

y
=

1

S/N
×
√

|µ+| + |µ−|
|µ+µ−|

∣

∣

∣

∣

2

/

y
∂

∂y
ln

∣

∣

∣

∣

µ+

µ−

∣

∣

∣

∣

∣

∣

∣

∣

. (D.4)

The above equations (D.4) are used for the general lens model when the double
images form.

Estimation errors in the quasi-geometrical optics approximation

We evaluate the estimation errors in the quasi-geometrical optics approximation
for the SIS lens. We take into account the effect of the diffracted image formed at
lens center on the estimation errors. Then, the lensed waveform (D.1) is rewritten
as,

h̃L(f) =

(

|µ+|1/2 − i |µ−|1/2 e2πif∆td +
δc

MLzf
e2πiftc

)

× h̃(f), (D.5)

where µ− = 0 for y > 1. δc is defined as,

δc =
i

8π

1

(1 − y2)3/2
for y < 1,

=
1

8π

1

(y2 − 1)3/2
for y > 1,

and tc = 2MLz(y + 1)2 for the SIS lens (see §4.4.2). The third term in Eq.(D.5)
corresponds to the diffracted image. The Fisher matrix Γij(i, j = 1, 2, 3) can be
obtained similar to equations (D.2) as,

Γ11 = (2π∆td)
2 |µ−| (fh̃|fh̃) + (2π)2 |δc|2

(

tc
MLz

)2

(h̃|h̃) +
|δc|2
M2

Lz

(f−1h̃|f−1h̃),

Γ12 = 4π2∆td
∂∆td
∂y

|µ−| (fh̃|fh̃) + (2π|δc|)2 tc
M2

Lz

∂tc
∂y

(h̃|h̃)

− δc
M2

Lz

∂δ∗c
∂y

(f−1h̃|f−1h̃),

Γ13 = −|δc|2
M2

Lz

(f−1h̃|f−1h̃),

Γ22 =

(

2π
∂∆td
∂y

)2

|µ−| (fh̃|fh̃) +
1

4

[

1

|µ+|

(

∂|µ+|
∂y

)2

+
1

|µ−|

(

∂|µ−|
∂y

)2
]

(h̃|h̃)

+

(

2π
|δc|
MLz

∂tc
∂y

)2

(h̃|h̃) +
1

M2
Lz

∣

∣

∣

∣

∂δc
∂y

∣

∣

∣

∣

2

(f−1h̃|f−1h̃),



Γ23 =
1

2

∂

∂y
(|µ+| + |µ−|) (h̃|h̃) +

δc
M2

Lz

∂δ∗c
∂y

(f−1h̃|f−1h̃),

Γ33 = (|µ+| + |µ−|) (h̃|h̃) +
|δc|2
M2

Lz

(f−1h̃|f−1h̃), (D.6)

where (f−1h̃|f−1h̃) is defined as,

(f−1h̃|f−1h̃) = 4

∫

df

Sn(f)

∣

∣

∣
f−1h̃(f)

∣

∣

∣

2

. (D.7)

The estimation errors ∆MLz/MLz = [(Γ−1)11]
1/2 and ∆y/y = [(Γ−1)22]

1/2/y are
obtained from Eq.(D.6) as,

∆MLz

MLz
=

1

S/N
×

2
∣

∣

∣

∂
∂y

ln ∆td

∣

∣

∣

[
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|µ+|+|µ−|

(

∂
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∣

µ+

µ−

∣

∣

∣

)2

+ 16π2|δc|2 t2c
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∂
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,

∆y

y
=

1
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× 2/y
[
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(

∂
∂y

ln
∣
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∣

∣

∣
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+ 16π2|δc|2 t2c
M2

Lz

(

∂
∂y

ln
∣

∣

∣
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∆td

∣

∣

∣

)2
]1/2

,

(D.8)

for y < 1. If we set δc = 0, the results in Eq.(D.8) coincide with the previous
results in Eq.(D.4). For y > 1, the errors is also obtained from Eq.(D.6) as,

∆MLz

MLz
=

∣

∣

∣

∣

(∂/∂y) ln tc
δc(∂/∂y) ln (tcδc/|µ+|1/2)

∣

∣

∣

∣

× M2
Lz

(f−1h̃|f−1h̃)
,

∆y

y
=

∣

∣

∣

∣

1

δc(∂/∂y) ln (tcδc/|µ+|1/2)

∣

∣

∣

∣

× M2
Lz

(f−1h̃|f−1h̃)
. (D.9)
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