超高増光率重力マイクロレンズ

大栗 真宗 (東京大学 RESCEU/物理/Kavli IPMU)

2017/10/23 観測的宇宙論WS@弘前

重力マイクロレンズ

 手前のコンパクト天体の重力レンズ効果による 遠方の星の一時的な増光

今回の話

- 銀河団中心部で新しいタイプの変動天体を発見
- 重力レンズで非常に大きく増光された単独の星
 と解釈 (増光率1000以上)
- 観測からソースとレンズの性質、およびダーク
 マターモデルへの制限可能性を議論する

Kelly, .., MO+, arXiv: 1706.10279

Icarusの発見

(銀河団MACSJI149.5+2223@z=0.54)

Kelly, .., MO+, arXiv: 1706.10279

Icarusの発見

(銀河団MACSJI149.5+2223@z=0.54)

Kelly, .., MO+, arXiv: 1706.10279

(銀河団MACSJI149.5+2223@z=0.54)

Kelly, .., MO+, arXiv:1706.10279

光度曲線

徐々に増加、急激な減光(非対称)

Kelly, .., MO+, arXiv:1706.10279

スペクトル

● 強いバルマーブレーク → z=I.49 (=母銀河のz) のB型星 [これまでで再遠方の単独の星の観測]

さらに他のイベント

2014 October 30 2016 Lev 2016B 0.5" LS1 / Lev 2016A January 3 2017 Lev 2017A 0.5" LS1 / Lev 2016A

↑ Icarus近傍での他のイベント (Kelly, .., MO+, arXiv:1706.10279)

← 他の銀河団でも似たイベント (Rodney,.., MO+, arXiv:1707.02434)

simulated by glafic 普通のマイクロレンズの例

simulated by glafic 焦線通過 (caustic crossing) の例

巨大アーク内の焦線通過

- Miralda-Escude (1991) が銀河団背後の重力レンズ
 を受けた巨大アーク内の単独の星の焦線通過の
 観測可能性を議論
- 滑らかな銀河団質量分布のみを考慮
- しかしながらほんのわずかなコンパクト天体が 存在するだけで焦線の構造が大幅に変更される (Diego, .., MO+ 2017; Venumadhav+ 2017)
- たとえダークマター自体がなめらかであっても Intra-Cluster Light (ICL)の星がそのようなコンパ クト天体の役割を担う

Intra-Cluster Light (ICL)

NASA/ESA/IAC/HFF team, STScI

- ・銀河団内の広がった放射
- DM分布に沿った分布
- 銀河団内の銀河の外側
 から剥ぎ取られた星の
 放射に由来

Diego, .., MO+, arXiv:1706.10281 (see also Venumadhav+ 2017)

• ICLによる臨界曲線の「<mark>破壊</mark>」

	臨界曲線の破壊によっか。 smooth+ICL(centry
	増光率がサチる Smooth+ICL(offset
•	コンパクト天体の存在
	を考慮することは
	Icarusの解釈に必須 ⁵

焦線通過 (caustic crossing) を理解する

- Icarusのような銀河団巨大アーク内の焦線通過 イベントはコンパクトDM (e.g., PBH)の有用な プローブになりうる
- このような焦線通過観測からそのレンズとソース
 にたいしてどのような情報が得られるだろうか?

e.g., Chang & Refsdal (1979)

単純な解析モデル

- ・ 点質量レンズ (質量 M) + 一定の convergence $\bar{\kappa}$ と shear $\bar{\gamma}$
- 巨大アーク内の高増光率領域は $\mu_{t}^{-1} = 1 - \bar{\kappa} - \bar{\gamma} \approx 0$
- 点質量レンズの臨界曲線と焦線は $\bar{\kappa}$ と $\bar{\gamma}$ のために大幅に変更をうける

 $eta_{
m z}/ heta_{
m E}$ $eta_{
m z}/ heta_{
m E}$ 0 0 -2 -2-10 10 -10 0 10 0 β_1/θ_E β_1/θ_E $(\mu_t^{-1}=0.001, \mu_r^{-1}=0.401)$ $(\mu_t^{-1}=-0.001, \mu_r^{-1}=0.399)$

1/2

 $(\mu_t^{-1}=0.001, \mu_r^{-1}=0.401)$

 $(\mu_t^{-1}=-0.001, \mu_r^{-1}=0.399)$

漸近的振る舞い

- 焦線近傍での全増光率は 距離 $\Delta \beta \rightarrow 0$ で増大 $\mu(\Delta \beta) \approx \mu_{t} \mu_{r} \left(\frac{\theta_{E}}{\sqrt{\mu_{t}} \Delta \beta} \right)^{1/2}$
- 孤立した点質量レンズに比 べ増光率は µt ^{3/4}µr > I だけ 大きい (銀河団ポテンシャルと 点質量レンズ両方の増光の重ね合わせ)

有限ソースサイズ効果

 ソースとなる星は有限の 半径Rを持つ **増**光率 → 最大増光率が存在 R=0 $\mu_{\rm max} \approx \mu(\Delta\beta = R) \approx \mu_{\rm t}\mu_{\rm r} \left(\frac{\theta_{\rm E}}{\sqrt{\mu_{\rm t}}R}\right)^{1/2}$ **R≠0** 小さい星半径Rほど 大きい最大増光率 µmax

増光された星の観測可能性 大きい半径を持つ星は最大増光率 µ_{max} が 小さいが、そのような星はもともと明るい

т	$(D)^2 (T)^4$	L:光度
$\frac{L}{T} =$	$=\left(\frac{R}{D}\right)\left(\frac{I}{T}\right)$	R:半径
L_{\odot}	$\langle R_{\odot} \rangle \langle T_{\odot} \rangle$	T: 温度

- 半径の大きい (もともとの光度が大きい) 星のほうが観測される最大明るさは大きい $f_{\max} \propto \mu_{\max} L \propto R^{-1/2} L \propto R^{3/2} T^4$
- 具体的に Icarus の場合 $m_{\text{peak}} \approx 25.5 - 3.75 \log \left(\frac{200 \ R}{R_{\odot}} \right) - 0.625 \log \left(\frac{M}{M_{\odot}} \right)$ ソース星の半径 点質量レンズ質量

レンズとソースへの制限

Diego, .., MO+, arXiv: 1706.10281

点質量レンズの数密度が十分大きくなると
 アインシュタイン半径が重なってくる

→ 増光率がサチる $\tau = \frac{\Sigma}{M} \pi \left(\sqrt{\mu_{\rm t}} \theta_{\rm E} D_{ol} \right)^2$ ⊤≈I → サチる

焦線通過:定性的理解

- 臨界曲線から
 遠いと不十分な
 増光率
- 中心部では平均 ^戦 戦
 増光率がサチる
- ・ 焦線通過は「正 しい」範囲での み観測される

イベントレート

• 焦線通過の期待されるイベントレート

レートを含めた制限

コンパクトダークマターへの制限

コンパクトダークマターへの制限

まとめ

- 銀河団の高増光率領域において全く新しい
 タイプの変動天体を発見した
- 巨大アーク内の単独の星が銀河団内のコンパ クト天体により非常に増光されたものと解釈 できる (µ_{peak} ≥ 4000 for lcarus)
- IcarusイベントはICLの星によって引き起こさ
 れたという解釈と無矛盾
- 解釈は複雑だがDM研究の多大なポテンシャル
- さらなる理論的/観測的研究が待たれる