21cm線と宇宙論

田代寛之 (名古屋大学)

第6回観測的宇宙論ワークショップ 2017/10/23-25 @弘前大学

21cm線とは何か?

中性水素の超微細構造に起因する電磁波

宇宙に非常にありふれた電波の一つ

背景光源に対する吸収線(もしくは放射線)として観測

電波領域での光源: クエーサー、CMB

CMBに対する吸収線(もしくは放射線)として観測

IGMのredshift z に応じた波長 21 (1+z) cm にシグナル

スピン温度

シグナルの強度: 超微細構造の励起/基底の状態数の比

超微細構造の励起状態と基底状態の個数密度の比

$$rac{n_1}{n_0} = 3 \exp\left(-rac{T_\star}{T_s}
ight)$$
 $\begin{array}{c}
n_0 : 基底状態の個数密度 \\
n_1 : 励起状態の個数密度 \\
T_\star = 0.068 \, \mathrm{K} \, (\lambda = 21 \, \mathrm{cm})
\end{array}$

スピン温度

宇宙論での21 cm 遷移の物理

- 自然放出
- CMBによる遷移

CMB光子による励起や誘導放出

- 衝突による遷移
 水素-水素、水素-電子など
- Lyman alpha pumping

Ly alpha を介した遷移 (天体からの影響)

21 cm 遷移(spin 温度)の物理

$$T_s = \frac{T_{\rm CMB} + (y_\alpha + y_c)T_K}{1 + y_\alpha + y_c}$$
(Field 1975)

Spin 温度はガスとCMBの温度とのバランスで決まる

ガスの温度や天体からの影響が小さい: y_c, y_lpha が小さい $T_s \sim T_{
m CMB}$

ガスの温度や天体からの影響が大きい : $y_c, \, y_lpha$ が大きい $T_s \sim T_{
m K}$

Global Spin temperature

Global Spin temperature

21 cm 遷移(spin 温度)の物理

$$T_s = \frac{T_{\rm CMB} + (y_\alpha + y_c)T_K}{1 + y_\alpha + y_c}$$
(Field 1975)

Spin 温度はガスとCMBの温度とのバランスで決まる

ガスの温度や天体からの影響が小さい: y_c, y_lpha が小さい $T_s \sim T_{
m CMB}$

ガスの温度や天体からの影響が大きい : $y_c, \, y_lpha$ が大きい $T_s \sim T_{
m K}$

CMBに対する吸収線(もしくは放射線)として観測

シグナルの強度: 超微細構造の励起/基底の状態数の比

宇宙論的21 cm シグナル

CMB温度からの差: differential Brightness temperature

$$\delta T_b(\nu) = \frac{T_{\rm S} - T_{\rm CMB}}{1 + z} (1 - e^{-\tau_{\nu_0}})$$

$$\sim 27 x_{\rm HI} (1 + \delta) \left(1 - \frac{T_{\gamma}}{T_s} \right) \left(\frac{H}{dv_r/dr + H} \right)$$

$$\times \left(\frac{1 + z}{10} \right)^{1/2} \left(\frac{0.15}{\Omega_m h^2} \right)^{1/2} \left(\frac{\Omega_b h^2}{0.023} \right) [\rm mK]$$

21cm線で探れる物理量

- 密度ゆらぎ
- 中性度
- ガス温度

赤方偏移した21 cmシグナルの利点

• Line absorption (emission)

宇宙論的21 cm線の観測計画

2020年~本格的な宇宙論観測

現在 宇宙論的観測の試験段階

"a needle in a haystack"

21 cm線の宇宙論

21 cmの宇宙論の可能性

ダークエイジ 再電離期

電離宇宙

それぞれの時代に応じた宇宙論の研究!

ダークエイジ

$$\begin{split} \delta T_b(\nu) &\sim 27 x_{\rm HI} (1+\delta_{\rm i}) \bigg(1 - \frac{T_{\gamma}}{T_s} \bigg) \bigg(\frac{H}{dv_r/dr + H} \bigg) \\ &\qquad \times \bigg(\frac{1+z}{10} \bigg)^{1/2} \bigg(\frac{0.15}{\Omega_m h^2} \bigg)^{1/2} \bigg(\frac{\Omega_b h^2}{0.023} \bigg) [\rm mK] \end{split}$$

- 密度ゆらぎ: 線形摂動
- ガス温度 : 断熱進化
- 中性度 : 電離光子源なし

理論予言が容易!

最大のメリット: Silk dampingの影響を受けない!

小スケールの密度ゆらぎが(原理的に)測定可能!

• ニュートリノ物理の検証

ミニハローからの21cm線

• 小スケールの測定の困難さ

e.g. $\ell_{\max} \approx 10^3 \left(\frac{D}{1 \text{km}}\right) \left(\frac{25}{1+z}\right)$ D: 望遠鏡の大きさ

ミニハロー: 宇宙初期での軽いダークマターハロー

- ・ 密度ゆらぎのバイアス天体
- 星が形成されていな(中性水素天体)

ミニハローによる21cm線ゆらぎ

$$\langle \delta T_b(\nu)^2 \rangle^{1/2} \approx \overline{\delta T_b}(\nu) \beta(z) \sigma_p(\bar{\nu}, \Delta \nu, \Delta \theta)$$

ミニハローバイアス 観測ビーム内の密度ゆらぎ

小スケールの密度ゆらぎが探れる!

ミニハローでの宇宙論

原始ゆらぎの測定 (Sekiguchi, ..., HT et al. 2017)

$$\mathcal{P}_{s}(k) = A_{s} \left(\frac{k}{k_{0}}\right)^{n_{s}-1+\frac{1}{2}\alpha_{s}\ln(k/k_{0})+\frac{1}{3!}\beta_{s}\ln^{2}(k/k_{0})}$$

Planck CMB観測による制限を 凌ぐ可能性

Warm Dark Matter

(Sekiguchi, HT et al. 2017)

- Blue-tilted isocurvature 北嶋さんのトーク
 - **Non-Gaussianity**

Planck - -COrE

宇宙の温度進化

21cm線観測ならではの研究

温度によるダークマター探査

Furlanetto et al. 2006 .

• 原始ブラックホール (PBH)

Hawking radiation (light PBH)Mack & Welsely 2008Accretion radiation (Massive PBH)HT & Sugiyama 2013

• ダークマターと通常物質の相互作用

バリオンとの相互作用に制限

バリオンと相互作用があるダークマターモデル

- Millicharged dark matter
- Electric dipole dark matter

相互作用による宇宙論的影響

• 密度ゆらぎ (CMB, LSS, ...)

バリオン温度とダークマター温度のカップリング
 21 cm線観測による検証 (HT et al. 2014)

Millicharged dark matter

ダークマターが僅かながら電荷を持つ

 $Q = \epsilon e \quad (\epsilon \ll 1)$

21 cmの宇宙論の可能性

ダークエイジ 再電離期

電離宇宙

それぞれの時代に応じた宇宙論の研究!

From Nature (Ncik Spenser)

From Nature (Ncik Spenser)

再イオン化期:宇宙初期の構造形成と密接に関わる需要な時期

- 宇宙最初の星
- 宇宙最初のブラックホール(QSO)
- 宇宙最初の銀河とそれに続く銀河の進化 などなど

From Nature (Ncik Spenser)

We don't know

- How it occurs
- How long it takes
- How the ionized region evolves

To obtain new constraints

Redshifted 21 cm line signals one of promising probing methods for Epoch of Reionisation

21cm線の将来観測のメインターゲット

Redshifted 21 cm signalの利点

Imaging

Pop III star まわりの21 cm線シグナル

- QSO(Massive BH) (Zaroubi et al. 2007, HT & Sugiyama 2013, Yajima & Li 2014)
- PopIII SN (HT in preparation)

イオン光子源やheating源に直接迫れる可能性

21 cmの宇宙論の可能性

ダークエイジ 再電離期

電離宇宙

それぞれの時代に応じた宇宙論の研究!

IGM中の水素は完全電離

IGMより21cm線は期待できない

銀河の中に中性水素が存在

http://skatelescope.org/

21cm線は銀河の良いトレーサー

- HI galaxy survey
- HI Intensity Mapping Survey

(個々の銀河に分解できない)

修正重力(Horndeski型)への制限

Yamauchi,..., HT et al. 2017

高次の**密度**成長率

$$\delta(\boldsymbol{k};\tau) = \sum_{n=1}^{\infty} D_{+}^{n}(\tau) \int \mathrm{d}^{3}\boldsymbol{k}_{1} \cdots \mathrm{d}^{3}\boldsymbol{k}_{n} \delta_{\mathrm{D}}^{3}(\boldsymbol{k}-\boldsymbol{k}_{1}-\cdots-\boldsymbol{k}_{n}) F_{n}(\boldsymbol{k}_{1},\cdots,\boldsymbol{k}_{n}) \delta_{\mathrm{L}}(\boldsymbol{k}_{1}) \cdots \delta_{\mathrm{L}}(\boldsymbol{k}_{n})$$

Linear order: $f = d \ln D_+ / \ln a$ $F_1 = \text{const.}$

2nd order:
$$F_2({m k}_1, {m k}_2; au) = lpha({m k}_1, {m k}_2) - rac{2}{7}\lambda(au)\gamma({m k}_1, {m k}_2)$$

Parametrization

$$f(a) = \Omega_m(a)^{\gamma(a)} \qquad \lambda(a) = \Omega_m(a)^{\xi(a)}$$

 $f(a) = \Omega_m(a)^{\gamma(a)}$ $\lambda(a) = \Omega_m(a)^{\xi(a)}$

Summary

21cm線シグナル: バリオンの密度ゆらぎ、温度、中性度

- ・ 理論予言しやすい
- CMB観測と相補的(CMBでやれることは大体やれる)
- バリオン温度進化、小スケールの物理

再電離期

• 初代星や初代銀河の物理

完全電離期

• 銀河探查、HI intensity map