2017/10/21-23 第6回観測的宇宙論ワークショップ @弘前大学

Approaching and going beyond the shell crossing of structure formation with perturbation theory

樽家 篤史

(京都大学基礎物理学研究所)

Stéphane Colombi (IAP) 嵯峨承平 (京大基研)

内容

大規模構造の摂動論とその問題

1次元宇宙での考察

3次元への拡張に向けた課題

まとめ

宇宙大規模構造と宇宙論

加速膨張の診断

ニュートリノ質量和

120

 $\begin{array}{ccc} 0 & 40 & 80 \\ s^2 \, \xi(s_{\perp}, s_{\parallel}) \, \left[h^{-2} \, \mathrm{Mpc}^2 \right] \end{array}$

-40

80

150

重力のテスト

銀河サーベイの重要ターゲット:

•バリオン音響振動

- •赤方偏移ゆがみ
- •フリーストリーム減衰

k<0.2-0.3 h/Mpc @ z~0-2 (重力進化の線形〜弱非線形領域)

摂動論による大規模構造の記述

精密観測データと比較する理論テンプレートとして、

摂動論による解析的計算手法が威力を発揮

大規模構造の非線形重力進化

+ 赤方偏移空間ゆがみ・銀河バイアスの非線形性

	\sim
取	辺

- •くりこみや高次摂動計算などのテクニックの発展
- •高速計算可能なパブリックコード

(Crocce & Scoccimarro '08, AT & Hiramtsu '08, Matsubara '08, AT et al. '12, ...)

宇宙論データ解析に応用 (WiggleZ, SDSS BOSS, ...)

弱重力 → ニュートン重力 & ゆらぎの波長 << ハッブル半径

冷たい暗黒物質(CDM) + バリオン≈圧力ゼロの渦なし流体

質量密度場 $\frac{\partial \delta_{\rm m}}{\partial t} + \frac{1}{a} \nabla \left[(1 + \delta_{\rm m}) \boldsymbol{v} \right] = 0,$ $\frac{\partial \boldsymbol{v}}{\partial t} + \frac{1}{a} (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{a} \frac{\partial \Psi}{\partial \boldsymbol{x}},$ $\frac{1}{a^2} \nabla^2 \Psi = 4\pi \, G \, \rho_{\rm m} \, \delta_{\rm m}.$ $\frac{1}{a^2} = - \wedge \nu \pi = \nu \nu$

Juszkiewicz ('81), Vishniac ('83), Goroff et al. ('86), Suto & Sasaki ('91), Makino, Sasaki & Suto ('92), Jain & Bertschinger ('94), ...

標準摂動論 $|\delta| \ll 1$ $\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots$ $\langle \delta(\mathbf{k}; t) \delta(\mathbf{k}'; t) \rangle = (2\pi)^3 \delta_{\mathrm{D}}(\mathbf{k} + \mathbf{k}') P(|\mathbf{k}|; t)$

無衝突自己重力多体系

より基本的な記述:

CDM + バリオン=無衝突粒子からなる自己重力多体系

無衝突ボルツマン方程式 (ヴラソフ方程式) ポアソン方程式 初期設定 (シングルストリーム) (ヴラソフ方程式 $\begin{bmatrix} \frac{\partial}{\partial t} + \frac{p}{ma^2} \frac{\partial}{\partial x} - m \frac{\partial \Psi}{\partial x} \frac{\partial}{\partial p} \end{bmatrix} f(x, p) = 0,$ $\begin{bmatrix} \frac{\partial}{\partial t} + \frac{p}{ma^2} \frac{\partial}{\partial x} - m \frac{\partial \Psi}{\partial x} \frac{\partial}{\partial p} \end{bmatrix} f(x, p) = 0,$ $\nabla^2 \Psi(x) = 4\pi G a^2 \begin{bmatrix} \frac{m}{a^3} \int d^3 p f(x, p) - \rho_m \end{bmatrix}$ $\vec{r} \mu \varphi g b$ $f(x, p) = \overline{n} a^3 \{1 + \delta_m(x)\} \delta_D[p - m a v(x)]$ 度量密度場 <u>速度場</u>

シングルストリームの仮定では圧力ゼロの流体系に帰着 ただし、この仮定はいずれ破れる(→ 摂動計算の破綻)

一次元重力系での例

初期条件 シェルクロッシング マルチストリーム ハローの形成 の形成 領域の発達

シングルストリームとして 扱えるのはここまで

宇宙論的状況だとハロー外部に シングルストリーム領域が広がる

スプラッシュバック半径

=シングルストリームとマルチストリームの境界(白いマル)

30 Mpc/h

Diemer et al. ('17)

摂動論のUV問題

ハロー形成が起こる小スケールに目をつぶれば シングルストリーム近似にもとづく摂動計算は問題ない?

高次計算すると大スケールのゆらぎが小ス ケールと強くカップリング → 摂動論が破綻

Bernardeau, AT & Nishimichi ('14)

大規模構造の応答関数

摂動論のトラブル:小まとめ

従来の摂動論にひそむ問題点

シングルストリームの破れ → 高次の摂動計算が破綻 (大スケールでも破綻)

対処方法

✔ 高次の計算をしない

適用範囲が限定される

✓ 有効場理論のアプローチ 圧力ゼロ流体からのずれを表す<u>有効ストレステンソル</u>を導入 N対シミュレーションで較正 Baumann et al. ('12) Carrasco, Herzberg & Senatore ('12), ... 理論の予言性が失われる

動機

シングルストリームを超える取り扱いは摂動計算で可能か?

計算精度や適用範囲は従来の方法に比べて改善するか?

<u>1次元宇宙での考察</u>

AT & Colombi ('17)

ポストコラプス摂動論 ラグランジェ描像にもとづく新 しい摂動論

適応フィルタリング マルチストリームの影響を低減

両者の組み合わせで小スケールまでシミュレーションを再現

ゼルドビッチ解

(Zel'dovich '70)

シングルストリーム $x(q;\tau) = q + \psi(q) D_+(\tau)$ の厳密解 $v(q;\tau) = \psi(q) \frac{dD_+(\tau)}{d\tau}$ $U_+(\tau) : 線形成長因子$

シミュレーション vs ゼルドビッチ

ポストコラプス摂動論 AT & Colombi ('17) ゼルドビッチ解をもとに、シェルクロッシング後の マルチストリーム領域を扱う新しい摂動計算手法 計算の概要 変移場 $x_{\text{Zel}}(q; \tau) = q + \psi(q; \tau)$ q:ラグランジュ座標 ゼルドビッチ解 $\psi(q; \tau) = A(q_0; t) + B(q_0; \tau)(q - q_0) + C(q_0; \tau)(q - q_0)^3 + \cdots$ 周りでテイラー展開

- I. マルチストリーム領域の「力」を計算: $F(x(q; \tau)) = -\nabla_x \Phi(x(q; \tau))$
- 2. 「力」を積分してゼルドビッチ解に対する反作用を求める: $\Delta v(Q; \tau, \tau_q) = \int_{\tau_q}^{\tau} d\tau' F(x(Q, \tau')), \quad \Delta x(Q; \tau, \tau_q) = \int_{\tau_q}^{\tau} d\tau' \Delta v(Q; \tau', \tau_q)$ ------ ラグランジュ座標 $Q=q-q_0$ の7次の多項式

ポストコラプス摂動:孤立ハロー

2度目のクロッシング後の近似は悪くなるものの、密度プ ロファイルの形状はシミュレーションをそれなりに再現

ポストコラプス摂動:CDM的初期条件

AT & Colombi ('17)

k P(k)/ π

適応ポストコラプス摂動

ハロー個々の構造に興味はない → スムージング ただし、ハローの成長・合体過程は環境に依存

初期密度ピークに対して「適応フィルタリング」

フィルターされた初期密度場を 用いてポストコラプス摂動

適応ポストコラプス摂動

ハロー個々の構造に興味はない → スムージング

ただし、ハローの成長・合体過程は環境に依存

初期密度ピークに対して「適応フィルタリング」

ポストコラプス摂動:CDM的初期条件

適応フィルタリング

k P(k) $/\pi$

老察

シングルストリームを超える取り扱いは摂動計算で可能か?

フリーパラメーターなし

ポストコラプス摂動論

マルチストリームのラグランジュ的取り扱い

適応フィルタリング

初期密度ピークに応じたハローの粗視化

ただし、

3次元ではゼルドビッチ解はあくまで「近似」 シェルクロッシング前の記述も正確にできるか非自明

宇宙論的ヴラソフコードの発展

DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS

2013 KOHJI YOSHIKAWA¹, NAOKI YOSHIDA^{2,3}, AND MASAYUKI UMEMURA¹ ¹ Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan; kohji@ccs.tsukuba. ² Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan ³ Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

Oliver Hahn^{$\star 1$} and Raul E. Angulo^{$\dagger 2$}

¹Department of Physics, ETH Zurich, CH-8093 Zürich, Switzerland ²Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, Planta-2, 44001, Teruel, Spain.

2016

Cold initial condition

ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial

tessellation

Thierry Sousbie^{a,b,c,*}, Stéphane Colombi^a

2016

^aInstitut d'Astrophysique de Paris, CNRS UMR 7095 and UPMC, 98bis, bd Arago, F-75014 Paris, France ^bDepartment of Physics, The University of Tokyo, Tokyo 113-0033, Japan ^cResearch Center for the Early Universe, School of Science, The University of Tokyo, Tokyo 113-0033, Japan

解析計算とシミュレーションの詳細な 比較ができるようになってきた

2D collapse with sinewave initial condition

Initial displacement @ a=0.01:

$$\Psi(\boldsymbol{q}) = \frac{L}{2\pi} \begin{pmatrix} 0.4 \sin\left(\frac{2\pi}{L} q_x\right) \\ 0.3 \sin\left(\frac{2\pi}{L} q_y\right) \end{pmatrix}$$

http://www.vlasix.org/index.php?n=Main.ColDICE

2D collapse with sinewave initial condition

Initial displacement @ a=0.01:

$$\Psi(\boldsymbol{q}) = \frac{L}{2\pi} \begin{pmatrix} 0.4 \sin\left(\frac{2\pi}{L} q_x\right) \\ 0.3 \sin\left(\frac{2\pi}{L} q_y\right) \end{pmatrix}$$

http://www.vlasix.org/index.php?n=Main.ColDICE

3次元シェルクロッシングの記述 嵯峨くんの講演 ラグランジュ的摂動論にもとづく記述(LPT・QID) (e.g., Matsubara '15, Rampf & Frisch '17) ヴラソフシミュレ a = 0.0350.8 0.82 ションとの比較 y=z=0 0.81 0.6 0.8 (準1次元的コラプス) 0.79 0.4 0.78 0.2 0.77 変移ベクトル $\Psi(q) = a_{init} \begin{pmatrix} \epsilon_x \sin q_x \\ \epsilon_y \sin q_y \\ \epsilon_z \sin q_z \end{pmatrix}$ 0.76 $\mathcal{V}_{\mathcal{X}}$ -0.12 -0.1 -0.08 0 -0.0€ 0.8 0.6 -0.2 0.4 0.2 0 -0.4 -0.2 LPT 5th -0.4 パラメーター: Q1D 1st -0.6 -0.6 Q1D 2nd -0.8 $a_{\text{init}} = 0.0005$ LPT growing 10th 0.010.020.030.04 -0.8 0 0.4 -0.4 -0.20.2 $(\epsilon_{\mathbf{x}}, \epsilon_{\mathbf{v}}, \epsilon_{\mathbf{z}}) = (-24, -4, -3)$ Х

3次元シェルクロッシングの記述 嵯峨くんの講演 ラグランジュ的摂動論にもとづく記述 (LPT・QID)

(e.g., Matsubara '15, Rampf & Frisch '17)

3次元シェルクロッシングの記述 嵯峨くんの講演 ラグランジュ的摂動論にもとづく記述 (LPT・QID) (e.g., Matsubara '15, Rampf & Frisch '17) シェルクロッシングが起こる ヴラソフシミュレー 直前の密度プロファイル ションとの比較 (準1次元的コラプス) 変移ベクトル $\Psi(q) = a_{init} \begin{pmatrix} \epsilon_x \sin q_x \\ \epsilon_y \sin q_y \\ \epsilon_z \sin q_z \end{pmatrix}$ LPT full 4th LPT full 5th Q1D 1st パラメーター: Q1D 2nd $a_{\text{init}} = 0.0005$ LPT growing 10th $(\epsilon_{\mathrm{x}}, \epsilon_{\mathrm{v}}, \epsilon_{\mathrm{z}}) = (-24, -4, -3)$ 5.×10⁻³ 1.×10⁻² $1. \times 10^{-3}$ r 0.05 0.50 0.10

準一次元的なコラプスでも、2度目以降のシェルクロッシング が早まり、1次元の摂動計算とずれる(多次元の効果)

まとめ

シングルストリーム近似にもとづく従来の計算手法を こえる大規模構造の摂動論の開発・発展

シングルストリーム近似にもとづく摂動計算の問題点 → 高次摂動で破綻

- シェルクロッシングを超える(1次元):
 - •ポストコラプス摂動論
 - マルチストリームのラグランジュ的取り扱い
 - •適応フィルタリング

初期密度ピークに応じたハローの粗視化

3次元への拡張に向けた研究も進展中 → 嵯峨くんの講演