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宇宙大規模構造と宇宙論
銀河サーベイの重要ターゲット：

Cosmological Analysis of BOSS galaxies 13
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM ⇥

�
rd,fid/rd

�
, H⇥

�
rd/rd,fid

�
, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM ⇥

�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H ⇥

�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

ods is consistent with what we observe in mocks (see Section 7.2
and Fig. 10). In all cases the µ-wedges analyses give significantly
tighter constraints than the multipole analyses, in both configura-
tion space and Fourier space. The consensus constraints, described
in §8.2 below, are slightly tighter than those of the individual wedge
analyses. At all three redshifts and for all three quantities, mapping
distance, expansion rate, and the growth of structure, the 68% con-
fidence contour for the consensus results overlaps the 68% confi-
dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 11 below.
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33
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10 S. Alam et al.

Figure 3. BAO signals in the measured post-reconstruction power spectrum (left panels) and correlation function (right panels) and predictions of the best-fit
BAO models (curves). To isolate the BAO in the monopole (top panels), predictions of a smooth model with the best-fit cosmological parameters but no BAO
feature have been subtracted, and the same smooth model has been divided out in the power spectrum panel. For clarity, vertical offsets of ±0.15 (power
spectrum) and ±0.004 (correlation function) have been added to the points and curves for the high- and low-redshift bins, while the intermediate redshift
bin is unshifted. For the quadrupole (middle panels), we subtract the quadrupole of the smooth model power spectrum, and for the correlation function we
subtract the quadrupole of a model that has the same parameters as the best-fit but with ✏ = 0. If reconstruction were perfect and the fiducial model were
exactly correct, the curves and points in these panels would be flat; oscillations in the model curves indicate best-fit ✏ 6= 0. The bottom panels show the
measurements for the 0.4 < z < 0.6 redshift bin decomposed into the component of the separations transverse to and along the line of sight, based on
x(p, µ) = x0(p) + L2(µ)x2(p), where x represents either s2 multiplied by the correlation function or the BAO component power spectrum displayed in the
upper panels, p represents either the separation or the Fourier mode, L2 is the 2nd order Legendre polynomial, p|| = µp, and p? =

p
p2 � µ2p2.

c
� 2016 RAS, MNRAS 000, 1–38

BOSS DR12

Alam et al. (’16)

•バリオン音響振動
•赤方偏移ゆがみ
•フリーストリーム減衰

k<0.2–0.3 h/Mpc @ z~0–2（重力進化の線形～弱非線形領域）

加速膨張の診断
重力のテスト
ニュートリノ質量和

観測スケール



摂動論による大規模構造の記述

大規模構造の非線形重力進化

精密観測データと比較する理論テンプレートとして、
摂動論による解析的計算手法が威力を発揮

•くりこみや高次摂動計算などのテクニックの発展
•高速計算可能なパブリックコード

＋ 赤方偏移空間ゆがみ・銀河バイアスの非線形性
最近

宇宙論データ解析に応用 (WiggleZ, SDSS BOSS, …)

(Crocce & Scoccimarro '08,  AT & Hiramtsu 
'08,  Matsubara ’08, AT et al. '12, ...)



大規模構造の摂動論

Juszkiewicz (’81), Vishniac (’83), Goroff et 
al. (’86), Suto & Sasaki (’91), Makino, Sasaki 
& Suto (’92), Jain & Bertschinger (’94), ...

弱重力 → ニュートン重力

冷たい暗黒物質(CDM) + バリオン    圧力ゼロの渦なし流体�

標準摂動論
|�|� 1
� = �(1) + �(2) + �(3) + · · · ��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)

& ゆらぎの波長 << ハッブル半径

パワースペクトル

30CHAPTER 4. ANALYTIC APPROACHES TO NONLINEAR STRUCTURE FORMATION

perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)

質量密度場
速度場

ニュートンポテンシャル



無衝突自己重力多体系
CDM + バリオン＝無衝突粒子からなる自己重力多体系

より基本的な記述：
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)

無衝突ボルツマン方程式
（ヴラソフ方程式）
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)

初期設定

分布関数

ポアソン方程式

デルタ関数

（シングルストリーム）
質量密度場 速度場

シングルストリームの仮定では圧力ゼロの流体系に帰着
ただし、この仮定はいずれ破れる（→ 摂動計算の破綻）



一次元重力系での例
１次元重力系の時間発展
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シングルストリームとして
扱えるのはここまで

シェルクロッシング
の形成

初期条件 マルチストリーム
領域の発達

ハローの形成

（宇宙膨張なし）

宇宙論的状況だとハロー外部に
シングルストリーム領域が広がる



スプラッシュバック半径

overdensity, namely, Rsp
mn, Rsp

50%, and Rsp
87% (corresponding to

the mean, median, and 87th percentile of the particle apocenter
distribution). Generally, the distributions of Rsp and Msp are
reasonably well described by log-normal functions, except for a
tail toward positive values. The tails are stronger in Msp/M200m
than in Rsp/R200m, presumably because the splashback mass
can increase due to large subhalos that have crossed into the
halo but not yet influenced Rsp. The tails are weakest for Rsp

50%

and Msp
50% and increase toward higher percentiles. For example,

the Msp/M200m distribution of the 87th percentile (orange lines
in Figure 2) has a peak that is slightly shifted off the median
value. The distribution of the enclosed overdensity Δsp is much
wider due to the combined scatter from Rsp and Msp but shows
no systematically discernible tails.

As the residuals from the median values are nearly log-
normal, we will hereafter quantify the distributions as the
median Rsp or Msp and the logarithmic 68% scatter in dex.
Figure 2 hints at some of the most important trends: the scatter
is smallest for low percentiles, low Γ, and large halo masses. In
contrast, redshift does not have a major impact on the scatter
(not shown in Figure 2). We find that the scatter, expressed in
units of dex, can be approximated as

p, 3sp 0 ps s s s n s= + G + +nG ( )

where p is the percentile divided by 100 and ps is zero for Rsp
mn

and Msp
mn. The parameters differ slightly for Rsp andMsp and are

given in Table 4. They were derived from a least-squares fit to
the measured scatter in the Γ–Rsp relation of the fiducial and
Planck samples at redshifts 0.2, 0.5, 1, 2, 4, and 8 and in the
peak-height bins shown in Figure 3 (we ignore the scatter at
z= 0, which is artificially increased; see Paper I). The scatter in

the enclosed overdensity Δsp is well approximated by the
scatter in Rsp and Msp added in quadrature,

3 . 4M R
2 2

sp sp sp
s s s= +D ( )

For example, the scatter at intermediate masses ( 1n = ) and
accretion rates ( 1G = ) is about 0.045 dex in both Rsp

mn and
Msp

mn and increases to about 0.055 dex for the 87th percentile.
The lowest scatter of about 0.02 dex occurs at 0.5G » and

3n » . We note that Equation (3) extrapolates to lower (and
even negative) scatter but should not be taken seriously below

0.02s = . The highest scatter occurs at low masses ( 0.5n = )
and high accretion rates ( 10G = ), about 0.08 dex for Rsp

mn and

0.1 dex for Rsp
87%, resulting in a scatter of about 0.2 dex

in sp
87%D .

We note that Equation (3) does not describe the scatter at
z = 0 or, more generally, at the final redshift of a simulation. At
those snapshots, the scatter is increased significantly by the
correction term introduced to balance the asymmetric time
distribution of particle splashbacks (Paper I). This term de-
biases the results, on average, but induces additional scatter that
strongly depends on Γ because the extrapolation in time is less
reliable for rapidly evolving halos. In particular, the scatter is
barely increased at low accretion rates ( 11G ) but increased
by up to a factor of 2 at high accretion rates. Finally, we caution
that (due to the tails in the distributions) the 2σ (i.e., 95%)
scatter can be slightly larger than twice the 1σ (i.e., 68%)
scatter. The difference exhibits a rather complex dependence
on mass and redshift, and we refrain from adding further
complexity to our fitting function.

Figure 1. Comparison of conventional “virial” and splashback radii (Rvir and Rsp, shown as orange and white circles). The image shows the projected density through
a slice in the L0125 simulation that is h30 Mpc1- wide and deep and h15 Mpc1- tall. The density field is visualized using the GOTETRA code (P. Mansfield et al.
2017, in preparation). Radii are shown for all halos with N 1000200m . (equivalent to a mass of h M1.4 1011 1´ -

:), and the mass of the central halo is
M h M1.2 10200m

14 1= ´ -
: (corresponding to almost a million particles). The splashback radii shown are defined as Rsp

87%, which corresponds most closely to the
density drop measured by the SHELLFISH code (see Section 4.2). For a small fraction of halos, SPARTA could not determine a splashback radius because they had
recently been subhalos.
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摂動論の UV 問題
ハロー形成が起こる小スケールに目をつぶれば
シングルストリーム近似にもとづく摂動計算は問題ない？

線形理論
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Figure 2. Comparison at redshifts z = {0, 0.375, 0.833, 1.75} of SPT up to one loop (black dashed
lines), two loops (black dot-dashed) and three loops (black diamonds) with N-body results of the
Horizon Run 2 [28] (red dots, see appendix C). The black line corresponds to the linear result. We
also show the results of Padé resummation (same styles as for SPT but in blue, see section 4); at
z = 0 the blue and black dashed line lie on top of each other.
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Figure 3. Same as figure 2 for redshifts z = {2.67, 4.5}

This is not obvious for other approaches, as the Zel’dovich approximation (ZA). For the
latter, the structure of the F

n

kernels di↵ers from the SPT dynamics at low-k, and di↵erent
contributions at higher loop order are suppressed by additional factors of the momentum

– 9 –

1ループ補正

２ループ補正

３ループ補正

N体計算

RegGp−loop
aþ ðkÞ ¼

Z
dq
q
Kp−loop

aþ ðk; qÞP0ðqÞ: (76)

We then have, for instance,

K1-loop
1þ ðk; qÞ ¼ 4πq3

!
fðq; kÞ þ 1

6

k2

q2

"
; (77)

K2−loop
1þ ðk;qÞ ¼−ð4πÞ2q3

Z
dq1

q21k
2

q21þq2
αf

!
q1
k
;
q
k

"
P0ðq1Þ:

(78)

Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.
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Pn-loop(k) �
�

d ln q Kn-loop(k, q) P0(q)

高次計算すると大スケールのゆらぎが小ス
ケールと強くカップリング → 摂動論が破綻



大規模構造の応答関数
大スケールに対する小スケールの影響は抑制されている

Gravitational screening of short-wave modes in cosmological fluids

Takahiro Nishimichi,1 Francis Bernardeau,1 and Atsushi Taruya2

1Institut d’Astrophysique de Paris
2Yukawa Institute for Theoretical Physics

We present the first measurement of the mode coupling structure of the cosmological large-scale
structure of the standard cosmological model at the level of the nonlinear power spectrum. More
specifically, we measure the response of the nonlinear matter power spectrum at wavenumber k
with respect to weakly perturbed linear power spectra at wavenumber q employing a large set of
cosmological N -body simulations. While the overall structure of the mode coupling can be accounted
for with standard perturbation theory results, our results show that the short wave modes are
strongly screened out as soon as q > k and contribute only weakly to the growth of the long-wave
modes. This is the first time such an effect is measured. Its origin is yet unclear but it is of crucial
importance for the use of large-scale cosmological data to infer fundamental cosmological of physical
parameters.

PACS numbers:
Keywords:

Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission[14], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, that is to scales where the sole
linear theory cannot be used. But such a scientific pro-
gram could then only be achieved if the properties of the
large-scale cosmological structure can be safely predicted
either from numerical simulations or from analytical in-
vestigations for any given cosmological model. In partic-
ular it is important such observables are shielded from
the details of small scale astrophysics and gas physics at
galactic or sub-galactic scales.

One way to reformulate this question is to quantify
how small scale structures can impact the growth of large
scale structure as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle at least when gravity only is at
play. The importance of such methods has been height-
ened after the detection of the baryon acoustic oscilla-
tions (BAOs) in the clustering of galaxies at late times
(e.g., [2]), making precise predictions of the nonlinear
matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales is unavoidable. It makes PT results
in general difficult to develop in a controlled manner. We
propose here to quantify such couplings with the use of
a two-variable kernel function[15], defined as the linear
response at wave-mode k with respect to initial pertur-
bation of the linear power spectrum at wave-mode q. In
the context of PT calculations Ref. [3] showed progres-
sive broadening of the kernel function as increasing the
PT order, and speculated that a regularization scheme

in the UV domain is required to give a realistic estimate
of the high-order perturbative contributions. The recent
paper by [4] also pointed out the unsuccessful conver-
gence of PT series at late times and proposed a simple
ansatz based on the Padé approximation to suppress the
strong UV sensitivity seen in the standard PT (SPT).

If the broadness of the kernel at late times suggested
from PT calculations is true, physics at very small scale
can influence significantly the matter distribution on
large scales where the acoustic feature is prominent. It
also poses a question to the reliability of simulations, with
which we can follow the evolution of Fourier modes only
in finite dynamic range. We here present a first direct
measurement of the kernel structure from cosmological
N -body simulations. We show that this allows a di-
rect test of regularization schemes employed in analytical
models.

Definition and methodology.— What is the response
of the nonlinear power spectrum at wavenumber k to
the linear power spectrum at wavenumber q? At linear
level, it is simply a Dirac-delta function since each Fourier
mode evolves independently in standard cosmological
scenarios. Here we wish to introduce a well-defined kernel
function and investigate it at fully nonlinear level. We
consider the nonlinear power spectrum as a functional
of the linear power spectrum, i.e., P nl = P nl[P lin], and
define the kernel function as its functional derivative:

K(k, q; z) = q
δP nl(k; z)
δP lin(q; z)

. (1)

We omit the explicit dependence on z from the arguments
in what follows. The normalization for K is chosen such
that a small variation in P nl is related to that of P lin as

δP nl(k) =
∫

d ln q K(k, q)δP lin(q). (2)

This relation provides us a simple way to measure the ker-
nel function from simulations. In order to do so, we pre-
pare two initial conditions with small modulations in the
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FIG. 2. Response function as a function of wavenumber q for various fixed k values and at di↵erent redshifts as indicated in the
panels. Simulation data are shown by triangles with error bars (upward triangles for positive values, and downward triangles
for negative values of K(k, q)). Di↵erent analytical predictions are also shown: standard perturbation theory (dotted), RegPT
(dashed) and a new hybrid model (25) proposed in this paper (solid). Data points are sparse on q > 0.5hMpc�1 simply because
of our simulation design.

III. RESPONSE FUNCTION FROM
PERTURBATION THEORY

In this section, we present analytical calculations of the
response function based on perturbation theory (PT).
The results are confronted with the response function
measured from N -body simulations. As we will see be-

low, the predictions made with the standard and re-
summed PT treatments do not perfectly match the simu-
lation results, but in several di↵erent regimes, they quan-
titatively explain the measured results of response func-
tion. We discuss the reasons for these, and then propose
a simple PT model that incorporates all the necessary
ingredients to quantitatively explain the overall trends
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d ln q K(k, q) �P0(q)出力 (非線形) 入力 (線形)

11

k
q-q q-q

kk
1

q-q

+ 2 + + ...Kab
(Eik)(k,q) =

FIG. 8. Diagrammatic representation of the leading diagrams in the eikonal limit. The wiggle lines represent the soft modes
one can encounter when q ⇠ k. In the Eikonal approximation the vertex values scale like k/|k�q| and can be arbitrarily large.
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FIG. 10. Same as Fig. 6, but in the q � k regime. We now show the response function at two di↵erent values of wavenumber
k, 0.1025hMpc�1 (left) and 0.3025hMpc�1 (right).

of q. We will borrow this form to have an analytical
model that gives the broadband shape correct in what
follows.

D. The proposed model

Now we are in a position to construct a phenomenolog-
ical model that respects all the findings above in di↵erent
regimes. First, in order to recover the galilean invariance
at the low-q limit, we impose the condition to have the
same asymptote as standard PT. Then following the way
of our construction of the regularized propagator (13),

we introduce counterterms and an overall damping factor
to the perturbative calculation of the response function.
Unlike the exponential damping factor in RegPT, our
new damping factor is designed to explain the damping
both in the high k and high q regimes. At the two-loop
order, our model reads
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where �k,q = ↵k+↵q with ↵ given by Eq (12). Note that
in the brace we have terms that depend on the �k,q factor,
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摂動論のトラブル：小まとめ
従来の摂動論にひそむ問題点

（大スケールでも破綻）
シングルストリームの破れ → 高次の摂動計算が破綻

対処方法
✓ 高次の計算をしない

✓ 有効場理論のアプローチ
圧力ゼロ流体からのずれを表す有効ストレステンソルを導入

適用範囲が限定される

理論の予言性が失われる
N対シミュレーションで較正
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動機
シングルストリームを超える取り扱いは摂動計算で可能か？

計算精度や適用範囲は従来の方法に比べて改善するか？

ラグランジェ描像にもとづく新
しい摂動論

適応フィルタリング

ポストコラプス摂動論

１次元宇宙での考察

マルチストリームの影響を低減

両者の組み合わせで小スケールまでシミュレーションを再現

AT & Colombi (’17)
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.

MNRAS 000, 1–21 (2015)

: 線形成長因子
: 変移場

Short title, max. 45 characters 3

Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.
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Then, Eqs. (7)–(9) are rewritten with

dx
dτ

= v, (13)

dv
dτ

= −∇xΦ, (14)

∇2
xΦ = 4πGρm a4 δ =

3
2

Ωm,0H
2
0 a δ, (15)

With the new expressions above, the solution is formally
written as:

x(q; τ) = x(q; τ0) +

Z τ

τ0

dτ ′ v(q; τ ′), (16)

v(q; τ) = v(q; τ0) −
Z τ

τ0

dτ ′ ∇xΦ(x(q; τ ′); τ ′), (17)

where the x(q; τ0) and v(q; τ0) are the initial condition given
at an initial time τ0, which will be specified below.

In what follows, we consider the dynamics of the cosmo-
logical system given above in a finite-size box of 0 ≤ x ≤ L,
imposing the periodic boundary condition. From Eq. (15),
the potential Φ satisfying the periodic boundary condition
is expressed in an integral form as:

Φ(x) =
3
2

Ωm,0H
2
0 a

×
Z L

0

dx′

"
−L

2

(„
|x − x′|

L
− 1

2

«2

− 1
12

)#
δ(x′). (18)

The derivation of this integral expression is presented in Ap-
pendix A. Then, the force exerted on a mass element at the
position x is given by:

F (x) ≡ −∇xΦ(x)

= −3
2

Ωm,0H
2
0 a
hZ L

0

dx′ δ(x
′)

2

˘
Θ(x − x′) − Θ(x′ − x)

¯

+
1
L

Z L

0

dx′ x′ δ(x′)
i
, (19)

where the function Θ(x) represents the Heaviside step func-
tion. In the above, we used the fact that the fluctuation aver-
aged over the space becomes vanishing, i.e.,

R L

0
dx′ δ(x′) =

0. Taking the limit L → ∞, the above expression recovers
the well-known result in the case with the infinite space.

2.2 Initial condition and pre-collapse dynamics

In one-dimensional case, the so-called Zel’dovich approxima-
tion gives an exact solution for the dynamics of mass sheet
before shell-crossing. The Zel’dovich solution also provides
a natural basis for the cold initial condition. The solution is
given by

x(q; τ) = q + ψ(q) D+(τ), v(q; τ) = ψ(q)
dD+(τ)

dτ
. (20)

Here, the function D+ is the linear growth factor satisfying
the following equation:
»

d2

dτ2
− 3

2
Ωm,0H

2
0 a(τ)

–
D+(τ) = 0. (21)

Note that in terms of the cosmic time t, Eq. (21) is reduced
to the standard form of the linear evolution equation:
»

d2

dt2
+ 2H(t)

d
dt

− 3
2

Ωm,0H
2
0

a3(t)

–
D+(t) = 0. (22)

The Zel’dovich solution in Eq. (20) contains an arbitrary
function called displacement field, ψ(q), which is related
to the linear density field δL(q) given at a very early time
(τini → −∞ or tini → 0):

dψ(q)
dq

D+(τini) = −δL(q; τini) = −δL(q) D+(τini) (23)

Since the Zel’dovich solution is exact before the shell-
crossing, we do not necessarily assume that the evolved den-
sity field δ(x) is small. One may thus consider the situa-
tion that at the region around a Lagrangian coordinate q0,
the density field becomes large, and the region will undergo
the shell-crossing at the time τ0. The conditions for shell-
crossing are generally described by1

∂x
∂q

˛̨
˛̨
q0

= 0,
∂2x
∂q2

˛̨
˛̨
q0

= 0,
∂3x
∂q3

˛̨
˛̨
q0

> 0. (24)

Denoting the time of shell-crossing by τ0, we may expand the
solution (20) at τ0 around the shell-crossing region below:

x(q; τ0) ≃ q0 + ψ(q0)D+(τ0) +

ȷ
1 +

dψ(q0)
dq0

D+(τ0)

ff
(q − q0)

+
X

n=2

1
n!

dnψ(q0)
dqn

0

D+(τ0) (q − q0)
n. (25)

Using Eq. (23), the conditions for shell-crossing [Eq. (24)]
imply that

δL(q0) =
1

D+(τ0)
,

dδL(q)
dq

˛̨
˛̨
q0

= 0,
d2δL(q)

dq2

˛̨
˛̨
q0

< 0. (26)

That is, the region where the shell-crossing takes place cor-
responds to the local density peak, and the conditions for
the shell-crossing are equivalent to the peak constraints.

3 PERTURBATIVE TREATMENT OF
POST-COLLAPSE DYNAMICS

We are interested in the dynamics of mass sheet after the
shell-crossing, when the Zel’dovich solution is no longer valid
and the dynamics is governed by the the multi-stream flow.
In this section, extending the work by Colombi (2015), we
develop the perturbative calculations to deal with the multi-
stream motion around the shell-crossing.

3.1 Post-collapse perturbation theory

The basic formalism to treat post-collapse dynamics is as
follows. Starting with the cold initial conditions in Sec. 2.2,
we first follow the pre-collapse dynamics with the exact
Zel’dovich solution. Then, at the regions undergoing the
shell-crossing, we switch to a perturbative treatment, and
compute the backreaction to the Zel’dovich flow, based on
an explicit functional form of the displacement field around
the shell-crossing region. To be precise, we compute the force
exerted at each position, extrapolating the Zel’dovich flow
from Eq. (19). Integrating the force over the time, we ob-
tain the correction of the velocity to the Zel’dovich motion
from Eq. (16). Further integrating the corrected velocity over

1 The shell-crossing point is the inflection point for the mapping
from Lagrangian to Eulerian frame.

MNRAS 000, 1–21 (2015)

0.0 0.2 0.4 0.6 0.8 1.0
!0.04

!0.02

0.00

0.02

0.04

0.0 0.2 0.4 0.6 0.8 1.0
!0.04

!0.02

0.00

0.02

0.04

0.0 0.2 0.4 0.6 0.8 1.0
!0.04

!0.02

0.00

0.02

0.04

x

v

x x

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

x x x

δ シェルクロッシング
まで厳密解

位相空間

密度プロファイル

シェルクロッシング

(Zel’dovich ’70)



シミュレーション vs ゼルドビッチ

# of particles (sheets) :
# of runs：

L = 1, 000Mpc
200, 000

50

無次元パワースペクトル
は３次元と同じ

パブリックコード： Vlafroid
http://www.vlasix.org/uploads/Main/froid1D.1.5.tar.gz

Short title, max. 45 characters 11

the development of phase-space structure. In each figure, the
upper and lower panels show the results without and with
adaptive smoothing, respectively. The free parameter of the
adaptivie smoothing, fcross, is set here to 1 for post-collapse
PT and 0.5 for Zel’dovich solution.

In general, as the clusters dynamically gets closer, both
the post-collapse PT and Zel’dovich solution fail to describe
the real dynamics in N -body simulations. While the post-
collapse PT can only give the perturbative correction to the
motion of clusters based on the initial density fields, the
actual motion of clusters is significantly affected by the in-
teraction with one other cluster. As a result, the location
of multi-valued regions predipcted by the post-collapse PT
becomes largely deviates from the actual position, and the
outcome of phase-space structure in N -body simulation sub-
stantially differ from what is expected from post-collapse PT
and Zel’dovich solution.

This generic trend does not change at all even if we in-
troduce the adaptive smoothing, but at the time after the
merger happens (i.e., a = 0.32), the visual impression is
rather changed. The dynamics at central part is now de-
scribed by the smoothed displacement field, with which the
predicted phase-space structure is just like those of a sin-
gle cluster. While this is totally a wrong prediction to the
merging dynamics, the substantial improvement is found
for the description at the outer part, where without adap-
tive smoothing, we still see the elongated two clusters, and
the disagreement between prediction and simulation is much
more pronounced. Introducing both adaptive smoothing and
the higher-order corrections to the post-collapse PT further
gives a better description to the merging clusters (Fig. 5 ).

The results seen in the merging clusters demonstrate
that the adaptive smoothing is indeed powerful and effec-
tive in describing the global trend of the phase-space struc-
ture. While this cannot capture the detailed inner structure
of the high-density region, it can give a better description
to a large-scale dynamics, keeping the location and size of
halos reasonably accurate. As we will see later, the adap-
tive smoothing can also give a drastic improvement on the
prediction of power spectrum in random initial conditions.
Further, the introduction of adaptive smoothing makes the
analytic calculations insensitive to the small-scale cutoff in
the initial condition, thus giving us a robust prediction. In
these respects, the criterion (iii) in Sec. 4.2 is the essen-
tial part of the adaptive smoothing procedure, and a choice
of fcross is crucial. Our various examinations suggest that
fcross = 1 and 0.5 are respectively the most optimal choice
for the post-collapse PT and Zel’dovich solution, and we
shall adopt these values in subsequent section.

5.4 Random initial condition: CDM-like spectrum

Let us now consider a more relevant cosmological set up
with random initial conditions. Although there is no realistic
setup in 1D, a relevant initial condition to be compared with
3D case may be given by the Gaussian random condisition
with the initial power spectrum:

P1D(k) =
k2

2π
P3D(k) (70)

with P3D being the matter power spectrum in 3D, which
we computed with the transfer function by Eisenstein & Hu

(1998). We set the cosmological parameters to those of
the base ΛCDM model determined by Planck Ade et al.
(2015): Ωm,0 = 0.3121, ΩΛ = 0.6879, Ωb = 0.04884,
H0 = 67.51 km s−1 Mpc−1, ns = 0.9653, σ8 = 0815. The
simulations were performed with the boxsize L = 1, 000Mpc
and initial redshift, zi = 99. The convergence of the simula-
tion results has been tested by varying the number of par-
ticles Nparticle

2, number of PM grid Ngrid and cutoff scales
of the initial power spectrum, kcut. Here, we mainly present
the results with Nparticle = 200, 000, Ngrid = 20, 000, and
kcut = 12.6Mpc−1. For the power spectrum measurement,
we ran the 50 simulations.

Fig. 6 shows the evolved results of the power spectra ob-
tained from the simulations (red) and the predictions. In left
panel, the predictions are plotted for the basic post-collapse
PT (blue solid) and Zel’dovich solution (green dotted), while
the variants of the prediction for post-collapse PT are sum-
marized in right panel, with the same color codes and line
types as in previous figures. Note that these predictions are
the measurement results. That is, based on the Zel’dovich
solution or post-collapse PT, we create the phase-space por-
trait with particles for each random initial condition, and
collecting the 50 independent realizations, the power spec-
trum is measured at each redshift from those phase-space
data. For comparison, in left panel, we also plot the analytic
power spectrum of the Zel’dovich solution, PZA(k) (black
solid line) (color code and line type for analytic power spec-
trum may have to be changed):

PZA(k; z) =

Z ∞

0

dq cos(k q)
h
e−k2{I(0)−I(q)}D+(z)2 − 1

i
;

I(q) =

Z ∞

0

dp
π

cos(p q)
P1D(p)

p2
(71)

In contrast to the 3D case, the amplitude of power spec-
trum at small scales is not strongly enhanced in 1D, and
the dimensionless power asymptotically becomes flat, i.e.,
k P (k) ≃const., as it has been predicted by a simple argu-
ment (e.g., Gouda & Nakamura 1989). Still, the deviation
from linear theory predictions is significant, and a proper
account of nonlinearity is essential for theoretical prediction.

Without the adaptive smoothing (depcited as thin
lines), the prediction with Zel’dovich solution starts to de-
viate from simulations at very early time (z = 15.3). The
post-collapse PT can capture the nonlinear growth associ-
ated with formation of halos, and it reproduces the sim-
ulation results to some extent. As decreasing the redshift,
however, the structure of halos is well-developed via the
merging and accretion processes, and the predictions de-
picted as thin lines significantly underestimate the power
spectrum even if the higher-order corrections are included
(left panel). Fig. 7 shows the phase-space structure clipped
from a particular realization data. As we see in left pan-
els, both the Zel’dovich solution and post-collapse PT fail
to reproduce the halo structures in simulation, and predict
the spurious elongated structure, leading to the underesti-
mation of the power spectrum. Note that the predictions

2 To be precise, sheets rather than particles may be more ap-
propriate terminology, as we have used in previous section. But
here, we shall follow the conventions in N -body simulation and
interchangebly use both.
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ポストコラプス摂動論

計算の概要
ゼルドビッチ解

2. 「力」を積分してゼルドビッチ解に対する反作用を求める：

1. マルチストリーム領域の「力」を計算：

変移場
q：ラグランジュ座標

シェルクロッシング
周りでテイラー展開

ゼルドビッチ解をもとに、シェルクロッシング後の
マルチストリーム領域を扱う新しい摂動計算手法

F (x(q; ⌧)) = �r
x

�(x(q; ⌧))

 (q; ⌧) = A(q0; t) +B(q0; ⌧) (q � q0) + C(q0; ⌧) (q � q0)
3 + · · ·

xZel(q; ⌧) = q +  (q; ⌧)
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3.2 Computing force in multi-valued region

To derive the corrections to the motion, we first compute the
force exerted on the mass element inside the multi-valued
region, − bQc ≤ Q ≤ bQc, shown in Fig. 1. Note that the
regions outside the shell-crossing, given at x < x(− bQc) and

x > x( bQc), are described by the Zel’dovich solution.
The force in the multi-valued region is computed with

Eq. (19), dividing each integral at the right-hand-side into
three contributions:
Z L

0

dx −→
“Z x(− bQc)

0

+

Z x( bQc)

x(− bQc)

+

Z L

x( bQc)

”
dx. (38)

Assuming that the collapse region, |Q| ≤ bQc, is small
enough, the contributions to the integrals from each do-
main can be computed analytically, based on the geomet-
rical setup in Fig. 1. The detailed calculations are presented
in Appendix B. Summing up all the contributions given in
Eqs. (B4), (B5), (B8), and (B12), the force exerted on the
mass element at x = x(Q) inside the multi-valued region
becomes

F (x(Q; τ)) = −3
2
H2

0Ωm,0 a(τ)
h
J (Q; q0, τ) + F(q0, τ)

i

(39)

with the functions J and F respectively defined by

J (Q; q0, τ) =

8
>>>>>>>>><

>>>>>>>>>:

n
1 + B(q0; τ)

o
Q − C(q0; τ) Q3

−sgn(Q)
q

3(Q̂2
c − Q2)

; Qc < |Q| < bQc,

n
−2 + B(q0; τ)

o
Q − C(q0; τ) Q3

; |Q| < Qc,

(40)

and

F(q0, τ) = −ψ(q0) D+(τ), (41)

where the quantities A, B, and C are defined by Eqs. (28)–
(30). Note that in deriving Eq. (39), we have assumed that

the system follows Zel’dovich solution at |Q| > bQc. Since
the resultant expressions are written in terms of the local
quantities characterizing the density peak at position q0 and
the shell-crossing time τ0, Eq. (39) is still applicable to the
cases in which there appear other shell-crossing regions at
|Q| > bQc.

3.3 Corrections to the Zel’dovich flow

Provided the explicit expression for the force in multi-stream
region, we now compute the corrections to the Zel’dovich
flow based on the formal solution in Eqs. (16) and (17),
which give the approximate expression relevant at the multi-
valued region:

∆v(Q; τ, τq) =

Z τ

τq

dτ ′ F (x(Q, τ ′)), (42)

∆x(Q; τ, τq) =

Z τ

τq

dτ ′ ∆v(Q; τ ′, τq). (43)

Notice that depending on the position in Lagrangian space
of our interest, the expression of the force is different [see
Eq. (39)]. Thus, we have to divide the domain of the integrals
in Eqs. (42) and (43) into several pieces:

(i) τ0 ≤ τ < bτc(Q) : The position Q is located at the
single-valued region (i.e., |Q| > Qc), and the motion is still
described by the Zel’dovich solution. We have

x(Q; τ) = xZel(Q; τ) ≡ q + ψ(q)D+(τ), (44)

v(Q; τ) = vZel(Q; τ) ≡ ψ(q)
dD+(τ)

dτ
. (45)

(ii) bτc(Q) ≤ τ < τc(Q) : The position Q lies at multi-

valued region, and it satisfies Qc < |Q| ≤ bQc. Thus, in
addition to the Zel’dovich flow, the corrections arising from
the multi-stream flow needs to be added:

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xout(Q; τ, bτc(Q)), (46)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vout(Q; τ, bτc(Q)). (47)

(iii) τc(Q) ≤ τ : This corresponds to |Q| ≤ Qc, and the
position Q now lies at inner part of the multi-valued region.
Similar to the above case, the backreacion to the Zel’dovich
flow needs to be computed, including both the multi-stream
dynamics at inner part and the incoming flow from the outer
part. We may write

x(Q; τ) = xZel(Q; bτc(Q)) + ∆xin(Q; τ, bτc(Q)), (48)

v(Q; τ) = vZel(Q; bτc(Q)) + ∆vin(Q; τ, bτc(Q)). (49)

In what follows, we shall compute the backreaction to
the Zel’dovich flow, and derive the expressions for ∆x and
∆v at each domain. The calculation of the corrections is
rather straightforward, but needs several step. Readers who
are not interested in the detailed derivation may skip the
subsequent section, but just check the final results summa-
rized in Eqs. (53) and (57) for outer part, and Eqs. (61) and
(65) for inner part, together with the coefficients in Table 1
and 2.

3.3.1 Velocity and position at outer part: Qc < |Q| ≤ bQc

Let us first consider the outer part of the multi-valued region
(ii). In this case, the correction to the velocity becomes

∆vout(Q; τ, bτc) = −3
2
H2

0 Ωm,0

Z τ

bτc(Q)

dτ ′ a(τ ′)

×
n
J (Q; q0, τ

′) + F(q0, τ
′)
o

(50)

Recalling the fact that bτc − τ0 ≃ (κ/8) Q2 [see Eq. (36)], the
above integrals are performed with a help of the formulae in
Appendix D [see Eqs. (D4) and (D5)]. For the integration of
the first term, we obtain the approximate expression valid
for the short period after the shell-crossing time τ0:

Z τ

bτc(Q)

dτ ′ a(τ ′)J (Q; q0, τ
′)

≃ a(τ0)

"
T Q +

ȷ
−κ

8
+

1
6
δ′′L(q0)D+(τ0) T

ff
Q3

− sgn(Q)
κ

4
√

3

“
bQc(τ)

2 − Q2
”3/2

− κ
48
δ′′L(q0)D+(τ0) Q5

#
,

(51)
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cases in which there appear other shell-crossing regions at
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are not interested in the detailed derivation may skip the
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and 2.
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ポストコラプス摂動：孤立ハロー
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Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).
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２度目のクロッシング後の近似は悪くなるものの、密度プ
ロファイルの形状はシミュレーションをそれなりに再現
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the development of phase-space structure. In each figure, the
upper and lower panels show the results without and with
adaptive smoothing, respectively. The free parameter of the
adaptivie smoothing, fcross, is set here to 1 for post-collapse
PT and 0.5 for Zel’dovich solution.

In general, as the clusters dynamically gets closer, both
the post-collapse PT and Zel’dovich solution fail to describe
the real dynamics in N -body simulations. While the post-
collapse PT can only give the perturbative correction to the
motion of clusters based on the initial density fields, the
actual motion of clusters is significantly affected by the in-
teraction with one other cluster. As a result, the location
of multi-valued regions predipcted by the post-collapse PT
becomes largely deviates from the actual position, and the
outcome of phase-space structure in N -body simulation sub-
stantially differ from what is expected from post-collapse PT
and Zel’dovich solution.

This generic trend does not change at all even if we in-
troduce the adaptive smoothing, but at the time after the
merger happens (i.e., a = 0.32), the visual impression is
rather changed. The dynamics at central part is now de-
scribed by the smoothed displacement field, with which the
predicted phase-space structure is just like those of a sin-
gle cluster. While this is totally a wrong prediction to the
merging dynamics, the substantial improvement is found
for the description at the outer part, where without adap-
tive smoothing, we still see the elongated two clusters, and
the disagreement between prediction and simulation is much
more pronounced. Introducing both adaptive smoothing and
the higher-order corrections to the post-collapse PT further
gives a better description to the merging clusters (Fig. 5 ).

The results seen in the merging clusters demonstrate
that the adaptive smoothing is indeed powerful and effec-
tive in describing the global trend of the phase-space struc-
ture. While this cannot capture the detailed inner structure
of the high-density region, it can give a better description
to a large-scale dynamics, keeping the location and size of
halos reasonably accurate. As we will see later, the adap-
tive smoothing can also give a drastic improvement on the
prediction of power spectrum in random initial conditions.
Further, the introduction of adaptive smoothing makes the
analytic calculations insensitive to the small-scale cutoff in
the initial condition, thus giving us a robust prediction. In
these respects, the criterion (iii) in Sec. 4.2 is the essen-
tial part of the adaptive smoothing procedure, and a choice
of fcross is crucial. Our various examinations suggest that
fcross = 1 and 0.5 are respectively the most optimal choice
for the post-collapse PT and Zel’dovich solution, and we
shall adopt these values in subsequent section.

5.4 Random initial condition: CDM-like spectrum

Let us now consider a more relevant cosmological set up
with random initial conditions. Although there is no realistic
setup in 1D, a relevant initial condition to be compared with
3D case may be given by the Gaussian random condisition
with the initial power spectrum:

P1D(k) =
k2

2π
P3D(k) (70)

with P3D being the matter power spectrum in 3D, which
we computed with the transfer function by Eisenstein & Hu

(1998). We set the cosmological parameters to those of
the base ΛCDM model determined by Planck Ade et al.
(2015): Ωm,0 = 0.3121, ΩΛ = 0.6879, Ωb = 0.04884,
H0 = 67.51 km s−1 Mpc−1, ns = 0.9653, σ8 = 0815. The
simulations were performed with the boxsize L = 1, 000Mpc
and initial redshift, zi = 99. The convergence of the simula-
tion results has been tested by varying the number of par-
ticles Nparticle

2, number of PM grid Ngrid and cutoff scales
of the initial power spectrum, kcut. Here, we mainly present
the results with Nparticle = 200, 000, Ngrid = 20, 000, and
kcut = 12.6Mpc−1. For the power spectrum measurement,
we ran the 50 simulations.

Fig. 6 shows the evolved results of the power spectra ob-
tained from the simulations (red) and the predictions. In left
panel, the predictions are plotted for the basic post-collapse
PT (blue solid) and Zel’dovich solution (green dotted), while
the variants of the prediction for post-collapse PT are sum-
marized in right panel, with the same color codes and line
types as in previous figures. Note that these predictions are
the measurement results. That is, based on the Zel’dovich
solution or post-collapse PT, we create the phase-space por-
trait with particles for each random initial condition, and
collecting the 50 independent realizations, the power spec-
trum is measured at each redshift from those phase-space
data. For comparison, in left panel, we also plot the analytic
power spectrum of the Zel’dovich solution, PZA(k) (black
solid line) (color code and line type for analytic power spec-
trum may have to be changed):

PZA(k; z) =

Z ∞

0

dq cos(k q)
h
e−k2{I(0)−I(q)}D+(z)2 − 1

i
;

I(q) =

Z ∞

0

dp
π

cos(p q)
P1D(p)

p2
(71)

In contrast to the 3D case, the amplitude of power spec-
trum at small scales is not strongly enhanced in 1D, and
the dimensionless power asymptotically becomes flat, i.e.,
k P (k) ≃const., as it has been predicted by a simple argu-
ment (e.g., Gouda & Nakamura 1989). Still, the deviation
from linear theory predictions is significant, and a proper
account of nonlinearity is essential for theoretical prediction.

Without the adaptive smoothing (depcited as thin
lines), the prediction with Zel’dovich solution starts to de-
viate from simulations at very early time (z = 15.3). The
post-collapse PT can capture the nonlinear growth associ-
ated with formation of halos, and it reproduces the sim-
ulation results to some extent. As decreasing the redshift,
however, the structure of halos is well-developed via the
merging and accretion processes, and the predictions de-
picted as thin lines significantly underestimate the power
spectrum even if the higher-order corrections are included
(left panel). Fig. 7 shows the phase-space structure clipped
from a particular realization data. As we see in left pan-
els, both the Zel’dovich solution and post-collapse PT fail
to reproduce the halo structures in simulation, and predict
the spurious elongated structure, leading to the underesti-
mation of the power spectrum. Note that the predictions

2 To be precise, sheets rather than particles may be more ap-
propriate terminology, as we have used in previous section. But
here, we shall follow the conventions in N -body simulation and
interchangebly use both.
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DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION
IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS

Kohji Yoshikawa1, Naoki Yoshida2,3, and Masayuki Umemura1
1 Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan; kohji@ccs.tsukuba.ac.jp

2 Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
3 Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Received 2012 June 18; accepted 2012 November 23; published 2012 December 20

ABSTRACT

We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the
Vlasov–Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical
simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly.
The integration scheme is based on the positive flux conservation method recently developed in plasma physics.
We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the
gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for
all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions.
The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are
run on 646 grids. The computation speed scales well with the number of processors, and thus our code performs
efficiently on massively parallel supercomputers.

Key words: galaxies: kinematics and dynamics – methods: numerical

Online-only material: color figures

1. INTRODUCTION

Gravitational interaction is one of the most important physical
processes in the dynamics and the formation of astrophys-
ical objects, such as star clusters, galaxies, and the large-
scale structure of the universe. Stars and dark matter in these
self-gravitating systems are essentially collisionless, except for
a few cases, such as globular clusters and stars around supermas-
sive black holes. The dynamics of the collisionless systems is
described by the collisionless Boltzmann equation or the Vlasov
equation.

Conventionally, gravitational N-body simulations are used to
follow the evolution of collisionless systems. In such simu-
lations, particles represent sampled points of the distribution
function in the phase space. The particles—point masses—
interact gravitationally with other particles, through which their
orbits are determined. They are actually superparticles of stars
or dark matter particles. The gravitational potential field repro-
duced in an N-body simulation is therefore intrinsically grainy
rather than what it should be in the real physical system. It is
well known that two-body encounters can alter the distribution
function in a way that violates the collisionless feature of the
systems, and undesired artificial two-body relaxation is often
seen in N-body simulations. There is another inherent problem
in N-body simulations. Gravitational softening needs to be intro-
duced to avoid artificial large-angle scattering of particles caused
by close encounters. Physical quantities such as mass density
and velocity field are subject to intrinsic random noise owing to
the finite number of particles especially in low-density regions.

To overcome these shortcomings of the N-body simulations,
several alternative approaches have been explored. For example,
the self-consistent field (SCF) method (Hernquist & Ostriker
1992; Hozumi 1997) integrates orbits of particles under the
gravitational field calculated by expanding the density and the
gravitational potential into a set of basis functions. In the SCF
method, the particles do not directly interact with one another but

move on the smooth gravitational potential calculated from the
overall distribution of the particles. Despite of these attractive
features, the major disadvantage of the SCF method is its
inflexibility that the basis set must be chosen so that the lowest
order terms reproduce the global structure of the systems under
investigation (Weinberg 1999). In other words, the SCF method
can be applied only to the symmetric gravitational collapse or
the secular evolution of the collisionless systems.

The ultimate approach for numerical simulations of the
collisionless self-gravitating systems would be direct inte-
gration of the collisionless Boltzmann equation, or Vlasov
equation, combined with the Poisson equation. The advan-
tage of the Vlasov–Poisson simulations was previously shown
by Janin (1971) and Cuperman et al. (1971), who studied
one-dimensional violent relaxation problems using the water-
bag method (Hohl & Feix 1967; Roberts & Berk 1967).
Fujiwara (1981, 1983), for the first time, successfully solved
the Vlasov–Poisson equations for one-dimensional and spheri-
cally symmetric systems using the finite volume method. Other
grid-based approaches include the seminal splitting method of
Cheng & Knorr (1976), more generally the semi-Lagrangean
methods (Sonnendrücker 1998), a finite element method (Zaki
et al. 1988), a finite volume method (Filbet et al. 2001), the
spectral method (Klimas 1987; Klimas & Farrell 1994), and a
more recent multi-moment method (Minoshima et al. 2011).
A comparison study of some of these methods is presented in
Filbet & Sonnendrücker (2003).

So far, such direct integration of the Vlasov equation has been
applied only to problems in one or two spatial dimensions. Solv-
ing the Vlasov equation in six-dimensional phase space requires
an extremely large memory and computational time. However,
the rapid development of massively parallel supercomputers has
made it possible to simulate collisionless self-gravitating sys-
tems in the full six-dimensional phase space by numerically
integrating the Vlasov–Poisson equations with a scientifically
meaningful resolution.

1
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ABSTRACT
Dark matter numerical simulations and the N -body method are essential for understanding
how structure forms and evolves in the Universe. However, the discrete nature of N -body
simulations can a↵ect its accuracy when modelling collisionless systems.
We introduce a new approach to simulate the gravitational evolution of cold collisionless
fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable “Lagrangian
phase space elements”. These geometrical elements are piecewise smooth maps between
three-dimensional Lagrangian space and six-dimensional Eulerian phase space and ap-
proximate the continuum structure of the distribution function. They allow for dynamical
adaptive splitting to accurately follow the evolution even in regions of very strong mixing.
The elements thus permit a deterministic non-linear description of self-gravitating cold
and collisionless fluids in the continuous limit.
We discuss in detail various one-, two- and three-dimensional test problems which demon-
strate the correctness and performance of our method. We show that our method has
several advantages compared to standard N -body algorithms by i) explicitly tracking the
fine-grained distribution function, ii) naturally representing caustics, iii) providing an
arbitrarily regular density field that is defined everywhere in space, iv) giving directly a
smooth and regular gravitational potential field, thus eliminating the need for any type of
ad-hoc force softening.
Finally, we illustrate the feasibility of using our method for cosmological studies by
simulating structure formation in a warm dark matter cosmology. We show that spurious
collisionality and large-scale discreteness noise of N -body methods are both strongly
suppressed, which eliminates artificial fragmentation of filaments while providing access to
the full deterministic evolution of the fluid in phase space.
Therefore, we argue that our new approach improves on the N -body method when
simulating self-gravitating cold and collisionless fluids, and is the first method that allows
to explicitly follow the fine-grained evolution in six-dimensional phase space.

Key words: cosmology: dark matter – cosmology: large-scale structure of the Universe –
cosmology: theory – galaxies: kinematics and dynamics – methods: numerical

1 INTRODUCTION

Numerical simulations lie at the very heart of contemporary
cosmology. They are the only method that can accurately follow
the growth of small primordial density fluctuations into the
highly nonlinear objects that populate the low-redshift Universe
(e.g. Davis et al. 1985; Efstathiou et al. 1985; Bertschinger 1998;
Springel et al. 2005; Angulo et al. 2012). As such, they have
proven an indispensable tool in the formulation of our theory
of cosmological structure formation and in the validation of
the ⇤CDM model.

Since most of the mass in the Universe appears to be in

? Email: hahn@phys.ethz.ch
† Email: rangulo@cefca.es

the form of dark matter (DM; a fundamental particle with a
negligible non-gravitational interaction cross-section with both
itself and baryonic matter), numerical simulations that only fol-
low gravitational forces were the natural first tool employed by
pioneer cosmologists. Since the 1970s, these simulations have
progressively increased their scope and accuracy, nowadays
spanning a huge dynamic range. State-of-the-art simulations
employ trillions of bodies to describe volumes comparable to
the observable Universe, while resolving the collapsed DM
structures that could host the faintest galaxies (see e.g. Heit-
mann et al. 2014; Skillman et al. 2014; Ishiyama et al. 2014,
for recent examples).

A milestone in the history of gravity-only simulations was
the establishment of a universal form for the density profile
of collapsed dark matter haloes (Navarro et al. 1996, 1997).
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Figure 14. The initial conditions for the “ripple-wave” test problem
(cf. Sec. 4.2). Shown are the particle locations (panel a), the density
field using the tetrahedral phase space elements (panel b), using
tri-linear elements (panel c) and using tri-quadratic elements (panel
d). The linear elements are discontinuous at element boundaries,
while the quadratic is continuous.

tri-quadratic reconstructed from N-body 323

tri-quadratic 323 self-consistent

Figure 16. Comparison between a reconstruction of the tri-
quadratic density field from the 322 standard N-body run (top
half-panel) and the self-consistent evolution of the tri-quadratic
elements (bottom half-panel). One clearly sees that N -body particle
noise significantly perturbs the solution, in particular, caustics are
not persistent.

using refinement in Figure 17, comparing once more against
the 5123 particle high-res N -body solution at the same force
resolution. We only consider the tri-quadratic elements in this
case, although the linear elements also perform reasonably well.
We started with the same 323 initial conditions as in the fixed
resolution test shown in Figure 15, but now employed the force
refinement criterion with a threshold of 0.1 to dynamically
split elements if required (the results using velocity refinement
are however not significantly di↵erent). The solution allowing
for one additional level of refinement is shown in the top panel,
the one for two levels in the middle panel, and the reference
N -body solution at the bottom. Rather strikingly, the solutions
quickly converge to the reference solution in the exact shape
and position of caustics. Already with one additional level, the
central density of the clump is comparable to the reference
solution. We do not perform a more quantitative solution of

a. 323 + one level dynamic adaptive refinement

b. 323 + two level dynamic adaptive refinement

c. 5123 N-body

Figure 17. The ripple wave collapse test with dynamic adaptive
refinement. The 323 runs use the same initial conditions as in Fig. 15,
tri-quadratic elements and one (top, panel a), and two (middle, panel
b) of dynamic adaptive refinement. The bottom panel shows the
solution of a high-resolution N -body run using 5123 particles at the
same 2563 PM force resolution. On clearly sees how adding more
supporting points approaches the high-resolution N -body solution.
Still, the top two panels have significantly fewer degrees of freedom
than the N -body run.

these toy problems but let the images speak for themselves
and perform a quantitative convergence study of refinement
in the next section, where we apply the Lagrangian element
method to cosmological structure formation.

5 A FIRST APPLICATION: COSMOLOGICAL
SIMULATION OF A WARM DM UNIVERSE

We now apply our Lagrangian phase space element method to a
cosmological problem. We simulate the gravitational evolution
of a L=20 Mpc/h cube in a universe where dark matter is
made of warm particles of mass m

dm

= 250 eV, leading to a
small-scale cut-o↵ in the density perturbation spectrum.

The cosmological parameters we employ correspond to
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Abstract

Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution
of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical al-
gorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of
which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-
dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local
representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime.
In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by
measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method
on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the
intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [64, 65, 66]
generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution
of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinu-
soidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check
the parallel scaling of the code.

Keywords: Vlasov-Poisson, Tessellation, Simplicial mesh, refinement, Dark matter, Cosmology

1. Introduction

Stars in galaxies and dark matter in the Universe can be described as a smooth self-gravitating collisionless fluid
following Vlasov-Poisson equations,

@ f
@t
+ u.rr f � rr�.ru f = 0, (1)

�r� = 4⇡G⇢ = 4⇡G
Z

f (r,u, t) du, (2)

where f (r,u, t) represents the phase-space density at position r, velocity u and time t, � is the gravitational potential
and G is the gravitational constant.

In this article, we focus on the cold case, relevant to the dynamics of cold dark matter. In the concordant model of
large scale structure formation [121, 122], the matter content in Universe is indeed dynamically dominated by a cold
and collisionless component, designated by “dark” matter as it does not emit detectable light or radiation. The cold
nature of this component implies that the phase-space distribution function is initially concentrated on a phase-space
sheet: at the macroscopic level, the thickness of the this sheet is virtually null:

f (r,u, t = ti) = ⇢i(r) �D[u � ui(r)], (3)
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Fig. 14. Projected density at various times of the two sinusoidal waves simulation with ϵI = 10−7 and a force resolution of 20482 pixels. A zoom in the 
region [L/4 + L/16, 3L/4 − L/16] where L is the simulation box size has been performed. From top to bottom and left to right, the value of the expansion 
factor is a = 0.023, 0.025, 0.033, 0.048, 0.088 and 0.255. The image is obtained directly from the projected density field used to solve Poisson equation.

is clearly a poor fit for the Ng = 1024 simulations. In fact, s does not really behave convincingly as a power-law of the 
expansion factor. Note however that scaling arguments relating s to the vertex number count are valid only if they apply 
everywhere on the phase-space sheet, which is not necessarily the case here. For instance, visual inspection of Fig. 14
shows that at early times, dynamics is predominantly strongly anisotropic between two crossing times. This might induce 
anisotropic refinement during these lapses of time. However, because collapse happens in successive directions which are 
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region [L/4 + L/16, 3L/4 − L/16] where L is the simulation box size has been performed. From top to bottom and left to right, the value of the expansion 
factor is a = 0.023, 0.025, 0.033, 0.048, 0.088 and 0.255. The image is obtained directly from the projected density field used to solve Poisson equation.
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３次元シェルクロッシングの記述
ラグランジュ的摂動論にもとづく記述 （LPT・Q1D）
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３次元シェルクロッシングの記述
ラグランジュ的摂動論にもとづく記述 （LPT・Q1D）
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３次元シェルクロッシングの記述
ラグランジュ的摂動論にもとづく記述 （LPT・Q1D）
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３次元シェルクロッシング後
シェルクロッシング後の１次元ポストコラプス摂動論と比較

準一次元的なコラプスでも、２度目以降のシェルクロッシング
が早まり、１次元の摂動計算とずれる（多次元の効果）

（2次のQ1Dに対する力の反作用を求めた）

a=0.045

a=0.060

a=0.080

ヴラソフシミュレーション
ポストコラプス摂動

パラメーター：

(✏
x

, ✏
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z

) = (�24,�4,�3)

ainit = 0.0005



まとめ
シングルストリーム近似にもとづく従来の計算手法を

こえる大規模構造の摂動論の開発・発展

３次元への拡張に向けた研究も進展中 → 嵯峨くんの講演

•ポストコラプス摂動論
マルチストリームのラグランジュ的取り扱い

シングルストリーム近似にもとづく摂動計算の問題点

シェルクロッシングを超える（１次元）：

•適応フィルタリング
初期密度ピークに応じたハローの粗視化

高次摂動で破綻


