＠弘前大学

# Approaching and going beyond the shell crossing of structure formation with perturbation theory 

嶟家篤史
（京都大学基砹物理学研究所）

Stéphane Colombi（IAP）嵯峨承平（京大基研）

## 内容

大規模構造の摂動論とその問題
1 次元宇宙での考察
3 次元への拡張に向けた課題
まとめ

# 宇宙大規模構造と宇宙論 

銀河サーベイの重要ターゲット：

- バリオン音響振動
- 赤方偏移ゆがみ
- フリーストリーム減衰

$\mathrm{k}\left[\mathrm{h} \mathrm{MpC}^{-1}\right]$
Alam et al．（＇16）

加速膨張の診断
重力のテスト
ニュートリノ質量和


観測スケール $\mathrm{k}<0.2-0.3 \mathrm{~h} / \mathrm{Mpc} @ \mathrm{z} \sim 0-2$（重力進化の線形～弱非線形領域）

## 摂動論による大規模構造の記述

精密観測データと比較する理論テンプレートとして，
摂動論による解析的計算手法が威力を発揮
大規模構造の非線形重力進化
＋赤方偏移空間ゆがみ・銀河バイアスの非線形性
最近

- くりこみや高次摂動計算などのテクニックの発展
- 高速計算可能なパブリックコード
（Crocce \＆Scoccimarro＇08，AT \＆Hiramtsu ＇08，Matsubara＇08，AT et al．＇I2，．．．）

宇宙論データ解析に応用
（WiggleZ，SDSS BOSS，．．．）

## 大規模構造の摂動論

弱重力 $\rightarrow$ ニュートン重力 \＆ゆらぎの波長＜＜八ッブル半径冷たい暗黒物質 $(C D M)+$ バリオン $\approx$ 圧力ゼロの渦なし流体

## 質量密度場

$\frac{\partial \delta_{\mathrm{m}}}{\partial t}+\frac{1}{a} \nabla\left[\left(1+\delta_{\mathrm{m}}\right) \boldsymbol{v}\right]=0$,
$\frac{\partial \boldsymbol{v}}{\partial t}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\frac{1}{a} \frac{\partial \Psi}{\partial \boldsymbol{x}}$,
$\frac{1}{a^{2}} \nabla^{2} \Psi=4 \pi G \rho_{\mathrm{m}} \delta_{\mathrm{m}}$.
標準掁動論

$$
\begin{aligned}
& |\delta| \ll 1 \\
& \delta=\delta^{(1)}+\delta^{(2)}+\delta^{(3)}+\cdots \\
& \left\langle\delta(\boldsymbol{k} ; t) \delta\left(\boldsymbol{k}^{\prime} ; t\right)\right\rangle=(2 \pi)^{3} \delta_{\mathrm{D}}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) P(|\boldsymbol{k}| ; t) \\
& |\delta| \ll 1 \\
& \text { パワースペクトル } \\
& \delta=\delta^{(1)}+\delta^{(2)}+\delta^{(3)}+\cdots
\end{aligned}
$$

Juszkiewicz（＇81），Vishniac（＇83），Goroff et al．（＇86），Suto \＆Sasaki（＇91），Makino，Sasaki \＆Suto（＇92），Jain \＆Bertschinger（＇94），．．．

## 無衝突自己重力多体系

より基本的な記述：

## CDM＋バリオン＝無衝突粒子からなる自己重力多体系

無衝突ボルツマン方程式
（ヴラソフ方程式）
ポアソン方程式
初期設定
（シングルストリーム）

$$
\left[\frac{\partial}{\partial t}+\frac{\boldsymbol{p}}{m a^{2}} \frac{\partial}{\partial \boldsymbol{x}}-m \frac{\partial \Psi}{\partial \boldsymbol{x}} \frac{\partial}{\partial \boldsymbol{p}}\right] f(\boldsymbol{x}, \boldsymbol{p})=0,
$$

$$
\nabla^{2} \Psi(\boldsymbol{x})=4 \pi G a^{2}\left[\frac{m}{a^{3}} \int d^{3} \boldsymbol{p} f(\boldsymbol{x}, \boldsymbol{p})-\rho_{\mathrm{m}}\right]
$$

デルタ関数

$$
f(\boldsymbol{x}, \boldsymbol{p})=\bar{n} a^{3}\left\{1+\delta_{\mathrm{m}}(\boldsymbol{x})\right\} \delta_{\mathrm{D}}[\boldsymbol{p}-m a \boldsymbol{v}(\boldsymbol{x})]
$$

速度場
シングルストリームの仮定では圧カゼロの流体系に帰着 ただし，この仮定はいずれ破れる（ $\rightarrow$ 摂動計算の破縃）

## 1 次元重力系の時間発展（宇宙膨張なし）




位置 x



位置 x

初期条件 シェルクロッシング マルチストリーム ハローの形成 の形成領域の発達

$$
\begin{gathered}
\text { シングルストリームとして } \\
\text { 扱えるのはここまで }
\end{gathered}
$$

宇宙論的状況だとハロー外部に
シングルストリーム領域が広がる

## スプラッシュバック半径

＝シングルストリームとマルチストリームの境界（白いマル）


Diemer et al．（＇I7）

## 摂動論の UV 問題

ハロー形成が起こる小スケールに目をつぶれば
シングルストリーム近似にもとづく摂動計算は問題ない？



高次計算すると大スケールのゆらぎが小ス
ケールと強くカップリング $\rightarrow$ 摂動論が破綻

Bernardeau，AT \＆
Nishimichi（＇I4）

## 大規模構造の応答関数

N体シミュレーションでは，
Nishimichi，Bernardea \＆AT（＇I6，＇I7）
大スケールに対する小スケールの影響は抑制されている
出力（非線形）$\delta P_{\mathrm{nl}}(k)=\int d \ln q K(k, q) \delta P_{0}(q)$ 入力（線形）
応答関数 $K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}(q ; z)}}$
SPT 2－loop
－－－－－－－－RegPT 2－loop
——減衰項入りモデル



## 摂動論のトラブル：小まとめ

従来の摂動論にひそむ問題点
シングルストリームの破れ $\rightarrow$ 高次の摂動計算が破綻
(大スケールでも破綻)

対処方法
$\sqrt{ }$ 高次の計算をしない

## 適用範囲が限定される

$\sqrt{ }$ 有効場理論のアプローチ
Baumann et al．（＇I2）
Carrasco，Herzberg \＆Senatore（＇12），．．．圧力ゼロ流体からのずれを表す有効ストレステンソルを導入
$N$ 対シミュレーションで較正


## 動機

シングルストリームを超える取り扱いは摂動計算で可能か？
計算精度や適用範囲は従来の方法に比べて改善するか？

1 次元宇宙での考察
AT \＆Colombi（＇I7）
ポストコラプス摂動論 ラグランジェ描像にもとづく新 しい摂動論

適応フィルタリング
マルチストリームの影響を低減

## ゼルドビッチ解

（Zel＇dovich＇70）
シングルストリーム $x(q ; \tau)=q+\psi(q) D_{+}(\tau) \quad D_{+}(\tau):$ ：線形成長因子 の厳密解

$$
\mathrm{v}(q ; \tau)=\psi(q) \frac{d D_{+}(\tau)}{d \tau} \quad \psi(q): \text { 変移場 }
$$



## シミュレーション vs ゼルドビッチ



## 初期条件 Planck $\wedge$ CDM $P_{1 \mathrm{D}}(k)=\frac{k^{2}}{2 \pi} P_{3 \mathrm{D}}(k)^{2}$

無次元パワースペクトル は 3 次元と同じ

シングルストリーム近似の限界がクリアに

$$
L=1,000 \mathrm{Mpc}
$$

\＃of particles（sheets）：200， 000 \＃of runs ： 50

パブリックコード：Vlafroid http：／／www．vlasix．org／uploads／Main／froidID．I．5．tar．gz

# ポストコラプス摂動論 

AT \＆Colombi（＇I7）
ゼルドビッチ解をもとに，シェルクロッシング後の マルチストリーム領域を扱う新しい摂動計算手法

## 計算の概要

## 変移場

ゼルドビッチ解 $\quad x_{\mathrm{Zel}}(q ; \tau)=q+\psi(q ; \tau) \mathrm{q}:$ ラグランジュ座標
シェルクロッシング

$$
\psi(q ; \tau)=A\left(q_{0} ; t\right)+B\left(q_{0} ; \tau\right)\left(q-q_{0}\right)+C\left(q_{0} ; \tau\right)\left(q-q_{0}\right)^{3}+\cdots \text { 周りでテイラ一展開 }
$$

1．マルチストリーム領域の「力」を計算 $: ~ F(x(q ; \tau))=-\nabla_{x} \Phi(x(q ; \tau))$
2．「力」を積分してゼルドビッチ解に対する反作用を求める：

$$
\begin{aligned}
& \Delta \mathrm{v}\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} F\left(x\left(Q, \tau^{\prime}\right)\right), \quad \Delta x\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} \Delta \mathrm{v}\left(Q ; \tau^{\prime}, \tau_{\mathrm{q}}\right) \\
& \text {...... ラグランジュ座標 } Q=q-q_{0} \text { の7次の多項式 }
\end{aligned}
$$

## ポストコラプス摂動：孤立八ロ

## AT \＆Colombi（＇I7）

## 最初のシェル

位相空間









2 度目のクロッシング後の近似は悪くなるものの，密度プ
ロファイルの形状はシミュレーションをそれなりに再現

## ポストコラプス摂動：CDM的初期条件

AT \＆Colombi（＇I7）
$\mathrm{kP}(\mathrm{k}) / \pi$
Planck ACDM

$10^{-2}$ $10^{-1} \quad 1$ $\mathrm{k}\left[\mathrm{Mpc}^{-1}\right]$

## 八ロー同士の相互作用の影 <br> 響大 $\rightarrow$ 摂動的記述が悪化

## 適応ポストコラプス摂動

ハロー個々の構造に興味はない $\rightarrow$ スムージング
ただし，ハローの成長•合体過程は環境に依存初期密度ピークに対して「適応フィルタリング」

2度目のクロッシング時刻 に対応する臨界密度値


フィルターされた初期密度場を用いてポストコラプス摂動


## 適応ポストコラプス摂動

ハロー個々の構造に興味はない $\rightarrow$ スムージング
ただし，ハローの成長•合体過程は環境に依存初期密度ピークに対して「適応フィルタリング」

2度目のクロッシング時刻 に対応する臨界密度値


フィルターされた初期密度場を用いてポストコラプス摂動

適応

## ポストコラプス摂動：CDM的初期条件

k $\mathrm{P}(\mathrm{k}) / \pi$


## 適応フィルタリング

初期密度ピークに適用 （with filter scales determined by first－barrier crossing）


AT \＆Colombi（‘＇ 7 ）

## 考察

シングルストリームを超える取り扱いは摂動計算で可能か？
フリーパラメーターなし

ポストコラプス摂動論 マルチストリームのラグランジュ的取り扱い適応フィルタリング

初期密度ピークに応じたハローの粗視化 3 次元にも有効（なはず）

ただし，
3 次元ではゼルドビッチ解はあくまで「近似」
シェルクロッシング前の記述も正確にできるか非自明

# 宇宙論的ヴラソフコードの発展 

DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX－DIMENSIONAL PHASE SPACE：SELF－GRAVITATING SYSTEMS

## 2013

Kohji Yoshikawa ${ }^{1}$ ，Naoki Yoshida ${ }^{2,3}$ ，and Masayuki Umemura
${ }^{1}$ Center for Computational Sciences，University of Tsukuba，1－1－1 Tennodai，Tsukuba，Ibaraki 305－8577，Japan；kohji＠ccs．tsukuba
${ }^{2}$ Department of Physics，The University of Tokyo，Tokyo 113－0033，Japan
${ }^{3}$ Kavli Institute for the Physics and Mathematics of the Universe，The University of Tokyo，Kashiwa，Chiba 277－8583，Japan
An adaptively refined phase－space element method for cosmological simulations and collisionless dynamics

Oliver Hahn ${ }^{\star 1}$ and Raul E．Angulo $\dagger^{2}$
${ }^{1}$ Department of Physics，ETH Zurich，CH－8093 Zürich，Switzerland
${ }^{2}$ Centro de Estudios de Física del Cosmos de Aragón，Plaza San Juan 1，Planta－2，44001，Teruel，Spain．

## 2016


c． $512^{3} \mathrm{~N}$－body


ColDICE：a parallel Vlasov－Poisson solver using moving adaptive simplicial tessellation

Thierry Sousbie ${ }^{\text {a，b，c，＊，}}$ ，Stéphane Colombi ${ }^{\text {a }}$

解析計算とシミュレーションの詳細な比較ができるようになってきた
$a=0.088$

2D collapse with sinewave initial condition

Initial displacement @ $\mathrm{a}=0.01$ :

$$
\boldsymbol{\Psi}(\boldsymbol{q})=\frac{L}{2 \pi}\binom{0.4 \sin \left(\frac{2 \pi}{L} q_{x}\right)}{0.3 \sin \left(\frac{2 \pi}{L} q_{y}\right)}
$$



# 3 次元シェルクロッシングの記述 

㟄峨くんの講演ラグランジュ的摂動論にもとづく記述（LPT•QID）
（e．g．，Matsubara＇I5，Rampf \＆Frisch＇I7）

ヴラソフシミュレー ションとの比較 （準1次元的コラプス）変移ベクトル $\boldsymbol{\Psi}(\boldsymbol{q})=a_{\mathrm{init}}\left(\begin{array}{c}\epsilon_{\mathrm{x}} \sin q_{x} \\ \epsilon_{\mathrm{y}} \sin q_{y} \\ \epsilon_{\mathrm{z}} \sin q_{z}\end{array}\right)$ パラメーター：

$$
\begin{aligned}
& a_{\text {init }}=0.0005 \\
& \left(\epsilon_{\mathrm{x}}, \epsilon_{\mathrm{y}}, \epsilon_{\mathrm{z}}\right)=(-24,-4,-3)
\end{aligned}
$$



# 3 次元シェルクロッシングの記述 

崝峨くんの講演ラグランジュ的摂動論にもとづく記述（LPT•QID）
（e．g．，Matsubara＇I5，Rampf \＆Frisch＇I7）

## ヴラソフシミュレー ションとの比較

 （準1次元的コラプス）変移ベクトル$$
\Psi(\boldsymbol{q})=a_{\mathrm{init}}\left(\begin{array}{l}
\epsilon_{\mathrm{x}} \sin q_{x} \\
\epsilon_{\mathrm{y}} \sin q_{y} \\
\epsilon_{\mathrm{z}} \sin q_{z}
\end{array}\right)
$$

パラメーター:

$$
a_{\text {init }}=0.0005
$$

$$
\left(\epsilon_{\mathrm{x}}, \epsilon_{\mathrm{y}}, \epsilon_{\mathrm{z}}\right)=(-24,-4,-3)
$$

# 3 次元シェルクロッシングの記述 

㟄峨くんの講演 ラグランジュ的摂動論にもとづく記述（LPT•QID）（e．g．，Matsubara＇I5，Rampf \＆Frisch＇I7）
（準1次元的コラプス）

$$
\begin{aligned}
& \text { 変移ベクトル } \\
& \boldsymbol{\Psi}(\boldsymbol{q})=a_{\mathrm{init}}\left(\begin{array}{c}
\epsilon_{\mathrm{x}} \sin q_{x} \\
\epsilon_{\mathrm{y}} \sin q_{y} \\
\epsilon_{\mathrm{z}} \sin q_{z}
\end{array}\right) \\
& \text { パラメーター: } \\
& \quad a_{\mathrm{init}}=0.0005 \\
& \quad\left(\epsilon_{\mathrm{x}}, \epsilon_{\mathrm{y}}, \epsilon_{\mathrm{z}}\right)=(-24,-4,-3)
\end{aligned}
$$



シェルクロッシングが起こる直前の密度プロファイル

LPT full 4th
LPT full 5th
Q1D 1st
Q1D 2nd
LPT growing 10th

# 3 次元シェルクロッシング後 

 シェルクロッシング後の1次元ポストコラプス摂動論と比較

準一次元的なコラプスでも，2度目以降のシェルクロッシング が早まり，1 次元の摂動計算とずれる（多次元の効果）

## まとめ

## シングルストリーム近似にもとづく従来の計算手法を こえる大規模構造の摂動論の開発•発展

シングルストリーム近似にもとづく摂動計算の問題点
$\longrightarrow$ 高次摂動で破綻
シェルクロッシングを超える（1 次元）：
－ポストコラプス摂動論
マルチストリームのラグランジュ的取り扱い
－適応フィルタリング
初期密度ピークに応じたハローの粗視化
3 次元への拡張に向けた研究も進展中 $\rightarrow$ 嵯峨くんの講演

