数値シミュレーションを用いた 弱重力レンズ解析 による宇宙論研究

白崎正人 (国立天文台) 第6回観測的宇宙論ワークショップ 2017年10月25日 於 弘前大学

内容

- 1. 弱重カレンズ解析のイントロ
- 2. 弱重力レンズの基本
- 3. なぜシミュレーションが必要か
- 4. シミュレーションで何ができるか

5. 今後の課題

観測的宇宙論の15年

- ・観測的宇宙論の二大勢力
 - · CMB, galaxy clustering
- ·21世紀初頭:WMAP1,SDSS DR1, 2dF
- ・現在: Planck 2015, SPT/ACT, Polarbear, WiggleZ, SDSS IIIなど
- ・ACDMの成功、CMB温度/偏光揺ら ぎの精密測定、BAOによる距離測 定、赤方偏移歪み

弱重カレンズの15年

z<1における大スケール物質
 分布の直接観測 (銀河バイア
 スなし)

2000年: Bacon et al.
2000, Kaiser et al. 2000,
Van Waerbeke et al. 2000,
Wittman et al. 2000

· 2015年以降: CFHTLenS, KiDS, DES and HSC!

Weak Lensing Basics

像の変形は 2つの量で特徴付けられる convergence と shear

,

$$\begin{aligned} \kappa(\theta,\chi) &= \int_{0}^{\chi_{H}} \mathrm{d}\chi W(\chi) \delta(r(\chi)\theta,\chi) \text{ overdensity} \\ \text{Convergence} \\ W(\chi) &= \frac{3}{2} \left(\frac{H_{0}}{c}\right)^{2} \Omega_{\mathrm{m}0} \frac{r(\chi)}{a(\chi)} \int_{\chi}^{\chi_{H}} \mathrm{d}\chi' p(\chi') \frac{r(\chi'-\chi)}{r(\chi')} \end{aligned}$$

convergenceとshearはともに重力ポテンシャルの二階微分に 依存するので、ポアソン方程式を通じて変換できる

Typical value of Lensing

大規模構造 (> 10 Mpc)

銀河団 (1-10 Mpc)

Kilbinger et al. 2013 →Large-Scale Structure 0.001-0.01

Hamana et al. 2004 →Clusters (10¹⁴M_{sun}@z=0.3) ~0.1

Typical value of Lensing

大規模構造 (> 10 Mpc)

銀河団 (1-10 Mpc)

Kilbinger et al. 2013

→Large-Scale Structure 0.001-0.01 Hamana et al. 2004 →Clusters (10¹⁴M_{sun}@z=0.3)

シミュレーションがなぜ必要?

- 重力非線形成長
- $z=0.4-0.5 \rightarrow \text{Radial comoving}$ distance ~ 1 Gpc/h, 10' ~ 3 Mpc/h
- 物質分布 δ の非ガウス性:統計的な
 性質は 2 点統計だけでは決まらない
- Ray-Tracing Simulation of Gravitational Lensing

ソース銀河がz=1にいると 仮定した時のLensing Kernel

O 0.1 0.2 0.3 **0.4 0.5** 0.6 0.7 0.8 0.9

Ray-Tracing Simulation of Gravitational Lensing

http://clichymjc.free.fr/cosmologie_en.htm

discretize the lens eq.

Various Extensions

Known effects

やったことあるやつ

2016

Known effects

シミュレーションを 使ってできること

・開発された理論計算や手法の詳細なテスト

- ・非線形重力成長、プロジェクション効果、バリオン物理の影響
- 統計解析でしばしば用いられる慣習的な方法を調べる
- ・実験的/発見的なアプローチ
 - ・二点相関以外の情報を引き出す可能性
 - ・標準ではない宇宙論の制限可能性
- 統計量の精密なモデリング
 - たくさんシミュレーションをやって、統計量のモデル化
 - 統計量を解析的に予言するのが難しい時に有効

開発済み計算/手法のテスト1 非線形成長の重要性

・非線形成長 → 異なるフー
 リエモードのカップリング
 → 非ガウス性

 Gaussian covariance 近 似の妥当性, covariance
 を物理モデルで理解する

・Sato et al. 2009, 2010, Li et al 2014など

Sato et al 2009

開発済み計算/手法のテスト1 非線形成長の重要性

- ・非線形成長 → 異なるフーリエ
 モードのカップリング → 非ガ
 ウス性
- 三点相関: lowest non Gaussian info in clustering
 - Corey & Hu 2001, Pen et al 2003, Takada & Jain 2003, Valageas et al 2012, Kayo et al 2013, Sato & Nishimichi 2013 など

Kayo et al 2013

開発済み計算/手法のテスト2 プロジェクション効果

 Cluster search based on weak lensing mass map

$M_{FOF}=10^{14} M_{sun}/h z=0.4$

- Hamana et al 2004, Hennawi et al 2005, Maturi et al 2005, Fan et al 2010, Marian et al 2012, Hamana et al 2012
- ・銀河団の質量推定,銀河団外部/視線方向に
 並ぶLSSの影響
- Hoekstra et al 2003, 2011, Dodelson
 2004, Becker & Kravtosov 2011, Oguri
 & Hamana 2011, Gruen et al. 2015

Oguri & Hamana 2011

開発済み計算/手法のテスト2 プロジェクション効果 弱重カレンズ(WL)効果

スニアエフ・ゼルドビッチ(SZ)効果

	観測量への影響	関係する 物理量	観測可能な 物理量	
WL効果	背景銀河像を歪める	銀河団内 質量密度	$\gamma_{+} \propto \Sigma(\langle R) - \Sigma(R)$ $\Sigma(\mathbf{x}) = \int \mathrm{d}\ell \rho(\mathbf{x},\ell)$	
SZ効果	背景放射スペクトル を歪める	銀河団内 ガス圧力	$y(\mathbf{x}) \propto \int \mathrm{d}\ell P_e(\mathbf{x},\ell)$	
SZ効果→銀河団ガスの内部エネルギー 観測量Sと質量Mの関係				

WL効果→銀河団質量

P(S|M,Z)の 直 接 検 訨

開発済み計算/手法のテスト2 プロジェクション効果 弱重カレンズ(WL)効果

観測で得られる情報は、正確には projectionの影響を受けている

SZ-WLの同時観測から、本当に underlying P(S|M,z)を回復できるだろうか?

	を歪める	ガス圧力	
SZ効果→釗	長河団ガスの内部エネル	デー 観測量	Sと質量Mの関係
WL効果→釒	跟河団質量	P(S	4,z)の直接検証

 $\rho(\Lambda, \ell)$

Shirasaki et al 2016

33 mass-limited clusters found in cosmological hydrodynamical simulation

Surface mass density

Projected Pressure

→ mock data of Compton y

→ mock data of cosmic shear
We properly take into account

large scale structure along LOS (depth of 500 Mpc/h) + asphericity + substructure in DM halo

Mock Observation of thermal SZ - Lensing Mass relation

Mock Observation of thermal SZ - Lensing Mass relation

Our main findings:

1. Y_{2D}-M_{2D} relation would not be equivalent to Y_{3D}-M_{3D} relation

2. The scatter in 2D relation would be larger than that in 3D relation

 Y_{2D} Param. -3.5Y_{3D}-M_{3D} relation $[(h^{-1}Mpc)^2])$ from 3D info -4ntegrated Compton -4.5 $\log_{10}(Y_{2D}$ mock 2D observation -5 Our model of Y_{2D}-M_{2D} relation -5.514.515 15.514 $\log_{10}(\mathrm{M_{2D}}\ [h^{-\prime}\mathrm{M_{\odot}}])$

Lensing Mass M_{2D}

Correlated scatter in Y-M relation

Impact of correlated scatter on cosmology

Y-M scaling relation estimated from 2D observables Number count of clusters as a function of integrated Y

Ignoring correlated scatter would induce ~10% bias

2.5% in Ω_m or 6.6% in σ_8

開発済み計算/手法のテスト3 バリオン物理の影響

1 deg

- ・弱重力レンズが測る物質分布 = DM + baryon
- ・バリオンのfeedbackがどれくら い物質分布を変更するか
- M. White 2004, Semboloni et al 2011, Osato et al 2015
- ・arcmin scale, k~1h/Mpcで典 型的には重要

開発済み計算/手法のテスト4 統計解析の実用的なところ

・mock catalogがあるといろいろと便利

- ・パイプラインの動作確認
- ・たくさんmockがあれば統計誤差
- しばしば用いられてきた慣習的なことのテスト
 - · e.g., Jackknife covariance
- ・jackknife covarianceが真のsample variance をどこまで評価できるか
- · Norberg et al. 2009, Friedrich et al. 2016
- ・galaxy-galaxy lensingでは?

delete-one sample

Simple case Mass-limited sample + Absence of shape noise

 $M_{200m} > 10^{13.5}M_{sun}/h$, $z_{lens} = 0.10-0.27$ $z_s=0.5$, source number density of ~5.4 arcmin⁻² 480 realizations with the sky coverage of ~800 sq.degs

Simple case Mass-limited sample + Absence of shape noise

 $M_{200m} > 10^{13.5}M_{sun}/h$, $z_{lens} = 0.10-0.27$ $z_s=0.5$, source number density of ~5.4 arcmin⁻² 480 realizations with the sky coverage of ~800 sq.degs

Subsample covariance

Rescaled covariance for the subregion by a factor of area ratio

$$C(\text{subsample}) = \frac{\Omega_{\text{sub}}}{\Omega_s} C(\text{subregion})$$

Cosmological information in medium peaks

- Although their height may be determined by observational noise....
 - Kratochivil et al. (2010) have shown the dependence of DE on number density of medium peaks

SIMULATION

- Shirasaki et al. (2016) have shown the dependence of modified gravity similarly
- Real data also have shown their abundance cannot be explained by noises alone

What is the origin of medium peaks?

- Liu & Haiman (2016) have measured the cross correlation between medium peaks and galaxies
- They found the significant correlation, showing medium peaks does not distributed randomly and might be associated with galaxy number density

Colored map shows the galaxy number density

Decomposition of information contents

- What is relevant for the abundance of medium peaks?
- We shall decompose possible information contents into multiplepoint distributions
 - one-point distribution
 - two-point distribution, or power spectrum
 - three-point distribution, or bispectrum
- If we can construct a model with the same PDF and power spectrum as real, is it sufficient to explain the abundance of medium peaks?

Local-Gaussianized model

Assuming a local transformation

 $\mathcal{K}(\boldsymbol{\theta}) = \mathcal{F}(y(\boldsymbol{\theta}))$

Set y to be Gaussian

One-point distribution:

$$\int_{\mathcal{K}}^{\infty} \mathrm{d}\mathcal{K}' \mathrm{P}(\mathcal{K}') = \frac{1}{2} \mathrm{erfc}\left(\frac{y}{\sqrt{2}}\right)$$

Two-point distribution:

$$\xi_{\mathcal{K}}(\phi) = \langle \mathcal{K}(\theta) \mathcal{K}(\theta + \phi) \rangle$$

This model can reproduce the original one-point PDF and power spectrum by construction

The difference between the model and true data can be found at the level of three-point distribution

Results

Shirasaki 2016

実験的/発見的アプローチ2 標準ではない宇宙論での解析

・原始非ガウス性、修正重
 力理論、non CDMなど

・どういう統計量を見るの
 が一番よく制限できそう
 かを探るなど

 ・複数の手法で制限するこ
 とは大事

複数のレンズ統計による ACDMモデル整合性テスト

Shirasaki et al. 2016

- non-Gaussian information
- ・バリオン物理
- Intrinsic alignment
- Covariance estimation

Non-Gaussian information

- ・重力レンズ解析では、2点相関だけが全てではない
- · 3点相関、map-based statistics (PDF, peak, Minkowski functionals,…)
- N-point momentsは, random fieldの全ての統計的な性質を表すわけではない (e.g., Carron & Neyrinck 2012)
- · 色々あるけどもnon-Gaussian informationの得手不得手は?
 - · N-point statisticsは何が得意でどういう時に役立つのか
 - · Map-based statisticsはどうか?2点相関では説明できない情報は何?
 - Halo modelの成功から察するに、N-point statisticsはhigh density regionの情報 で主に決まっている?

データへの応用は着々と進んでいるが(CFHTLenS, KiDs, DES)、non-linear scaleまで理解が進んでいない

Peacock 2002

バリオンの影響

- ・hydro計算をいっぱいやるのは今の所厳しい
- dark matter onlyの計算をたくさんやるのはそれ
 なりに現実的
- ・subgrid physicsはよく分からない
- ・ 適当なパラメータ+近似で不定性を評価する
- · 例えば、baryon correction approach (e.g.
 Schneider & Teyssier 2015)
 - ·N体計算でできたハローの中の分布を変更する
 - · power spectrum以外の統計量でも使えるかも

Intrinsic Alignment

- ・hydro計算+観測結果に基づいた適当なパラメト リゼーションをN体に組み込む
- ・今やミレニアム計算クラスのN体はすぐ終わる (N=2048³, L=500 Mpc/h → 約1週間)
- ・準解析的なアプローチが有効ではなかろうか
- cluster memberによるdilutionの効果なども調べ
 られるだろう

Covariance

- ・データベクトルはこれからどんどん増えます
- ・どれくらいmock realizationsが必要なのかみんな常に不安
- · Super-sample covariance approach (e.g. Takada & Hu 2013)
 - ・もう少しテストが必要そうだが、二点統計なら未来は明るそう
- · (夢の) Joint analysis of possible LSS probes
 - \cdot Cosmic shear + galaxy position + tSZ + CMB lensing + etc.
 - ・(おそらく最強の) Self-calibration technique
 - Dark Energy, massive neutrino, 修正重力, どこまでわかる?

まとめ

- ・およそ15年くらいで、弱重力レンズ解析は宇宙論研究の基本ツールの一つに
- ・数値シミュレーションを用いた研究手法は順調に進展してきた。
 - ・非線形効果が及ぼす統計量への影響
 - 多数のシミュレーションを用いた新しい統計量の開拓
 - ・モックカタログの作成とそれらの応用
 - 大統計時代に耐えうる高精度理論モデルの構築

次の15年、観測データは着実に増加、ACDMの検証からNew physicsの探査
 へのパラダイムシフトに向けて、やれることはまだまだあります

Dependence of area division for a fixed total area

 $M_{200m} > 10^{13.5}M_{sun}/h$, $z_{lens} = 0.10-0.27$ $z_s=0.5$, source number density of ~5.4 arcmin⁻² 480 realizations with the sky coverage of ~800 sq. deg

General trends

On small R compared to the size of subregion, jackknife method gives a unbiased estimate.

The expected JK variance provide an estimate of the true variance with ~20% accuracy.

The JK covariance for a finer subdivision (i.e. a larger number of subregions) starts to deviate from the full covariance at relatively smaller separation.

At the larger separations, the curve starts to decrease

Effect of shape noise

